Flexible Gabor-wavelet atomic decompositions for L2-Sobolev spaces
暂无分享,去创建一个
[1] H. Feichtinger. On a new Segal algebra , 1981 .
[2] O. Christensen,et al. Approximation of the Inverse Frame Operator and Applications to Gabor Frames , 2000 .
[3] Ingrid Daubechies,et al. The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.
[4] K. Gröchenig. Describing functions: Atomic decompositions versus frames , 1991 .
[5] B. Torrésani. Wavelets associated with representations of the affine Weyl–Heisenberg group , 1991 .
[6] R. Duffin,et al. A class of nonharmonic Fourier series , 1952 .
[7] Gabriele Steidl,et al. Weighted Coorbit Spaces and Banach Frames on Homogeneous Spaces , 2004 .
[8] H. Triebel. Theory of Function Spaces III , 2008 .
[9] T. Strohmer,et al. Efficient numerical methods in non-uniform sampling theory , 1995 .
[10] A. Grossmann,et al. Transforms associated to square integrable group representations. I. General results , 1985 .
[11] Hans G. Feichtinger,et al. Wiener Amalgams over Euclidean Spaces and Some of Their Applications , 2020 .
[12] Massimo Fornasier,et al. Banach frames for α-modulation spaces , 2007 .
[13] B. Torrésani. Time-frequency representations : wavelet packets and optimal decomposition , 1992 .
[14] Massimo Fornasier,et al. Intrinsic Localization of Frames , 2005 .
[15] H. Feichtinger,et al. Atomic Systems for Subspaces , 2001 .
[16] G. Folland. Harmonic analysis in phase space , 1989 .
[17] H. Feichtinger,et al. Irregular sampling theorems and series expansions of band-limited functions , 1992 .
[18] H. Feichtinger,et al. Iterative reconstruction of multivariate band-limited functions from irregular sampling values , 1992 .
[19] H. Triebel. Theory Of Function Spaces , 1983 .
[20] K. Gröchenig. Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator , 2004 .
[21] I. Daubechies. Ten Lectures on Wavelets , 1992 .
[22] H. Feichtinger,et al. Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .
[23] H. Feichtinger. Atomic characterizations of modulation spaces through Gabor-type representations , 1989 .
[24] H. Feichtinger,et al. Banach Spaces of Distributions Defined by Decomposition Methods, I , 1985 .
[25] H. Feichtinger,et al. Banach spaces related to integrable group representations and their atomic decompositions. Part II , 1989 .
[26] M. Holschneider,et al. An Interpolation Family between Gabor and Wavelet Transformations , 2003 .
[27] O. Christensen. Frames, Riesz bases, and discrete Gabor/wavelet expansions , 2001 .
[28] Charles Fefferman,et al. Wave packets and fourier integral operators , 1978 .
[29] H. Feichtinger. Generalized Amalgams, With Applications to Fourier Transform , 1990, Canadian Journal of Mathematics.
[30] Joseph D. Lakey,et al. Extensions of the Heisenberg Group by Dilations and Frames , 1995 .
[31] Syed Twareque Ali,et al. Continuous Frames in Hilbert Space , 1993 .
[32] H. Feichtinger,et al. A unified approach to atomic decompositions via integrable group representations , 1988 .
[33] S. Albeverio,et al. Advances in Partial differential equations , 2001 .
[34] Bruno Torrésani,et al. Hybrid representations for audiophonic signal encoding , 2002, Signal Process..
[35] K. Chung. MATHEMATICS AND APPLICATIONS , 2004 .
[36] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[37] M. Fornasier. Quasi-orthogonal decompositions of structured frames , 2004 .
[38] G. Folland. Harmonic Analysis in Phase Space. (AM-122), Volume 122 , 1989 .
[39] C. Heil. An Introduction to Weighted Wiener Amalgams , 2003 .