An efficient hybrid heuristic method for the 0-1 exact k-item quadratic knapsack problem

The 0-1 exact k-item quadratic knapsack problem (E - kQKP) consists of maximizing a quadratic function subject to two linear constraints: the first one is the classical linear capacity constraint; the second one is an equality cardinality constraint on the number of items in the knapsack. Most instances of this NP-hard problem with more than forty variables cannot be solved within one hour by a commercial software such as CPLEX 12.1. We propose therefore a fast and efficient heuristic method which produces both good lower and upper bounds on the value of the problem in reasonable time. Specifically, it integrates a primal heuristic and a semidefinite programming reduction phase within a surrogate dual heuristic. A large computational experiments over randomly generated instances with up to 200 variables validates the relevance of the bounds produced by our hybrid dual heuristic, which yields known optima (and prove optimality) in 90% (resp. 76%) within 100 seconds on the average.

[1]  F. Glover A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem , 1965 .

[2]  Gautam Mitra,et al.  Quadratic programming for portfolio planning: Insights into algorithmic and computational issues Part II — Processing of portfolio planning models with discrete constraints , 2007 .

[3]  Fred W. Glover,et al.  Comparisons and enhancement strategies for linearizing mixed 0-1 quadratic programs , 2004, Discret. Optim..

[4]  R. Weismantel,et al.  A Semidefinite Programming Approach to the Quadratic Knapsack Problem , 2000, J. Comb. Optim..

[5]  P. Chardaire,et al.  A Decomposition Method for Quadratic Zero-One Programming , 1995 .

[6]  Frédéric Roupin,et al.  Partial Lagrangian relaxation for general quadratic programming , 2007, 4OR.

[7]  Nelson Maculan,et al.  Lagrangean decomposition for integer nonlinear programming with linear constraints , 1991, Math. Program..

[8]  Miguel A. Lejeune,et al.  An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints , 2009, Oper. Res..

[9]  Alain Billionnet,et al.  Linear programming for the 0–1 quadratic knapsack problem , 1996 .

[10]  P. Hammer,et al.  Pseudo-boolean Optimization Pseudo-boolean Optimization , 2001 .

[11]  Hans Kellerer,et al.  Approximation algorithms for knapsack problems with cardinality constraints , 2000, Eur. J. Oper. Res..

[12]  Gérard Plateau,et al.  An algorithm for the solution of the 0–1 knapsack problem , 2005, Computing.

[13]  Alain Billionnet,et al.  Different Formulations for Solving the Heaviest K-Subgraph Problem , 2005 .

[14]  Daniel Bienstock,et al.  Computational study of a family of mixed-integer quadratic programming problems , 1995, Math. Program..

[15]  Krzyszof Dudzinski On a cardinality constrained linear programming knapsack problem , 1989 .

[16]  Shucheng Liu,et al.  Lagrangian relaxation procedure for cardinality-constrained portfolio optimization , 2008, Optim. Methods Softw..

[17]  David Pisinger,et al.  The quadratic knapsack problem - a survey , 2007, Discret. Appl. Math..

[18]  Wen-xing Zhu Penalty Parameter for Linearly Constrained 0–1 Quadratic Programming , 2003 .

[19]  Alain Billionnet,et al.  Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method , 2009, Discret. Appl. Math..

[20]  Paolo Toth,et al.  Exact Solution of the Quadratic Knapsack Problem , 1999, INFORMS J. Comput..

[21]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[22]  Anass Nagih,et al.  0–1 Knapsack Problems , 2014 .

[23]  C. Helmberg,et al.  Solving quadratic (0,1)-problems by semidefinite programs and cutting planes , 1998 .

[24]  P. Hammer,et al.  Quadratic knapsack problems , 1980 .

[25]  Pierre Hansen,et al.  Roof duality, complementation and persistency in quadratic 0–1 optimization , 1984, Math. Program..

[26]  Marc E. Posner,et al.  The Collapsing 0–1 Knapsack Problem , 1978, Math. Program..

[27]  Egon Balas,et al.  An Algorithm for Large Zero-One Knapsack Problems , 1980, Oper. Res..

[28]  P. Hansen,et al.  Best network flow bounds for the quadratic knapsack problem , 1989 .

[29]  Dimitris Bertsimas,et al.  Algorithm for cardinality-constrained quadratic optimization , 2009, Comput. Optim. Appl..

[30]  A. Fréville,et al.  An exact search for the solution of the surrogate dual of the 0–1 bidimensional knapsack problem , 1993 .

[31]  Alain Billionnet,et al.  Extending the QCR method to general mixed-integer programs , 2010, Mathematical Programming.