Development of a novel genetic algorithm search method (GAP1.0) for exploring peptide conformational space

A genetic algorithm‐driven search method (GAP1.0; Genetic Algorithm Peptide search, version 1.0) has been developed for the computational exploration of peptide conformational space. The suitability of a variety of genetic algorithm operators was evaluated through representative calculations on the pentapeptide [Met]‐enkephalin (Tyr–Gly–Gly–Phe–Met). GAP1.0 was successful in efficiently elucidating backbone conformational features observed in the global minimum energy structure. Furthermore, the program readily identified the tremendous diversity among [Met]‐enkephalin conformers under physiological conditions. It is concluded that GAP1.0 provides a useful extension to the current repertoire of conformational analysis techniques. © 1997 John Wiley & Sons, Inc. J Comput Chem 18: 1971–1984, 1997

[1]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[2]  Richard S. Judson,et al.  Conformational searching methods for small molecules. II. Genetic algorithm approach , 1993, J. Comput. Chem..

[3]  R L Somorjai,et al.  Fuzzy cluster analysis of molecular dynamics trajectories , 1992, Proteins.

[4]  Jae Kwang Shin,et al.  High directional Monte Carlo procedure coupled with the temperature heating and annealing as a method to obtain the global energy minimum structure of polypeptides and proteins , 1991, Biopolymers.

[5]  Akbar Nayeem,et al.  A comparative study of the simulated‐annealing and Monte Carlo‐with‐minimization approaches to the minimum‐energy structures of polypeptides: [Met]‐enkephalin , 1991 .

[6]  Andrew E. Torda,et al.  Algorithms for clustering molecular dynamics configurations , 1994, J. Comput. Chem..

[7]  Juan C. Meza,et al.  Do intelligent configuration search techniques outperform random search for large molecules , 1992 .

[8]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[9]  S. Wilson,et al.  Applications of simulated annealing to peptides , 1990, Biopolymers.

[10]  Pierre Tufféry,et al.  A critical comparison of search algorithms applied to the optimization of protein side‐chain conformations , 1993, J. Comput. Chem..

[11]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[12]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[13]  Harold A. Scheraga,et al.  Structure and free energy of complex thermodynamic systems , 1988 .

[14]  A. Treasurywala,et al.  A genetic algorithm based method for docking flexible molecules , 1994 .

[15]  W. Pardridge Peptide drug delivery to the brain , 1991 .

[16]  Richard S. Judson,et al.  Analysis of the genetic algorithm method of molecular conformation determination , 1993, J. Comput. Chem..

[17]  H. Scheraga,et al.  Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids , 1975 .

[18]  W. V. van Gunsteren,et al.  The combined use of NMR, distance geometry, and restrained molecular dynamics for the conformational study of a cyclic somatostatin analogue , 1988, Biopolymers.

[19]  J. Scott Dixon,et al.  Flexible ligand docking using a genetic algorithm , 1995, J. Comput. Aided Mol. Des..

[20]  David Beasley,et al.  An overview of genetic algorithms: Part 1 , 1993 .

[21]  M. Karplus Molecular Dynamics of Biomolecules: Overview and Applications , 1986 .

[22]  H. Berendsen,et al.  COMPUTER-SIMULATION OF MOLECULAR-DYNAMICS - METHODOLOGY, APPLICATIONS, AND PERSPECTIVES IN CHEMISTRY , 1990 .

[23]  Peter A. Kollman,et al.  AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions , 1981 .

[24]  Georg E. Schulz,et al.  Structural Implications of the Peptide Bond , 1979 .

[25]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[26]  C. B. Lucasius,et al.  Genetic algorithms for large-scale optimization in chemometrics: An application , 1991 .

[27]  M. Karplus,et al.  Crystallographic R Factor Refinement by Molecular Dynamics , 1987, Science.

[28]  Peter S. Shenkin,et al.  Cluster analysis of molecular conformations , 1994, J. Comput. Chem..

[29]  Martin Karplus,et al.  Molecular dynamics simulations with experimental restraints , 1991 .

[30]  Jordi Mestres,et al.  Genetic algorithms: A robust scheme for geometry optimizations and global minimum structure problems , 1995, J. Comput. Chem..

[31]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[32]  Y. Okamoto,et al.  A prediction of tertiary structures of peptide by the Monte Carlo simulated annealing method. , 1989, Protein engineering.

[33]  R Unger,et al.  Genetic algorithms for protein folding simulations. , 1992, Journal of molecular biology.

[34]  D. Walters,et al.  Genetically evolved receptor models: a computational approach to construction of receptor models. , 1994, Journal of medicinal chemistry.

[35]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[36]  Juan C. Meza,et al.  On the Use of Direct Search Methods for the Molecular Conformation Problem , 1994 .

[37]  P Argos,et al.  Folding the main chain of small proteins with the genetic algorithm. , 1994, Journal of molecular biology.

[38]  J L Flippen-Anderson,et al.  Structural studies of opioid peptides: a review of recent progress in x-ray diffraction studies. , 1996, Biopolymers.

[39]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[40]  CHAPTER 3: – Receptors , 1992 .

[41]  M. Levitt A simplified representation of protein conformations for rapid simulation of protein folding. , 1976, Journal of molecular biology.

[42]  P. Argos,et al.  Potential of genetic algorithms in protein folding and protein engineering simulations. , 1992, Protein engineering.

[43]  D. Nagel,et al.  Cluster analysis in diagnosis. , 1992, Clinical chemistry.

[44]  G. N. Ramachandran,et al.  Conformation of polypeptides and proteins. , 1968, Advances in protein chemistry.