Social context in sentiment analysis: Formal definition, overview of current trends and framework for comparison

Abstract Sentiment analysis in social media is harder than in other types of text due to limitations such as abbreviations, jargon, and references to existing content or concepts. Nevertheless, social media provides more information beyond text, such as linked media, user reactions, and relations between users. We refer to this information as social context. Recent works have successfully leveraged the fusion of text with social context for sentiment analysis tasks. However, these works are usually limited to specific aspects of social context, and there have not been any attempts to analyze and apply social context systematically. This work aims to bridge this gap by providing three main contributions: 1) a formal definition of social context; 2) a framework for classifying and comparing approaches that use social context; 3) a review of existing works based on the defined framework.

[1]  Yoon Kim,et al.  Convolutional Neural Networks for Sentence Classification , 2014, EMNLP.

[2]  Jure Leskovec,et al.  Exploiting Social Network Structure for Person-to-Person Sentiment Analysis , 2014, TACL.

[3]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[4]  Daniela Godoy,et al.  A Social-aware online short-text feature selection technique for social media , 2018, Inf. Fusion.

[5]  Huan Liu,et al.  Exploiting social relations for sentiment analysis in microblogging , 2013, WSDM.

[6]  Yi Yang,et al.  Overcoming Language Variation in Sentiment Analysis with Social Attention , 2015, TACL.

[7]  Yamir Moreno,et al.  Sentiment cascades in the 15M movement , 2015, EPJ Data Science.

[8]  Yue Lu,et al.  Exploiting social context for review quality prediction , 2010, WWW '10.

[9]  Lior Rokach,et al.  Ensemble-based classifiers , 2010, Artificial Intelligence Review.

[10]  David G. Rand,et al.  the high Himalayas and Antarctica Phylogeography of microbial phototrophs in the dry valleys of Supplementary data tml , 2010 .

[11]  Frank Schweitzer,et al.  Ideological and Temporal Components of Network Polarization in Online Political Participatory Media , 2015, ArXiv.

[12]  Heng Ji,et al.  Combining Social Cognitive Theories with Linguistic Features for Multi-genre Sentiment Analysis , 2012, PACLIC.

[13]  J. Fernando Sánchez-Rada,et al.  Onyx: A Linked Data approach to emotion representation , 2016, Inf. Process. Manag..

[14]  George Papadakis,et al.  Content vs. context for sentiment analysis: a comparative analysis over microblogs , 2012, HT '12.

[15]  Philipp Cimiano,et al.  Linking Lexical Resources and Ontologies on the Semantic Web with Lemon , 2011, ESWC.

[16]  Aitor Almeida,et al.  Analysis of the Structured Information for Subjectivity Detection in Twitter , 2018, Trans. Comput. Collect. Intell..

[17]  Dirk Hovy,et al.  Demographic Factors Improve Classification Performance , 2015, ACL.

[18]  Petra Kralj Novak,et al.  Sentiment of Emojis , 2015, PloS one.

[19]  David Yarowsky,et al.  Exploring Demographic Language Variations to Improve Multilingual Sentiment Analysis in Social Media , 2013, EMNLP.

[20]  Heng Ji,et al.  Linking Tweets to News: A Framework to Enrich Short Text Data in Social Media , 2013, ACL.

[21]  Jure Leskovec,et al.  Patterns of temporal variation in online media , 2011, WSDM '11.

[22]  Ari Rappoport,et al.  Enhanced Sentiment Learning Using Twitter Hashtags and Smileys , 2010, COLING.

[23]  Patrick Paroubek,et al.  Twitter as a Corpus for Sentiment Analysis and Opinion Mining , 2010, LREC.

[24]  Lillian Lee,et al.  Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..

[25]  Preslav Nakov,et al.  SemEval-2013 Task 2: Sentiment Analysis in Twitter , 2013, *SEMEVAL.

[26]  Huan Liu,et al.  Mining social media with social theories: a survey , 2014, SKDD.

[27]  Jure Leskovec,et al.  Signed networks in social media , 2010, CHI.

[28]  A. Kaplan,et al.  Users of the world, unite! The challenges and opportunities of Social Media , 2010 .

[29]  Michael Gamon,et al.  BLEWS: Using Blogs to Provide Context for News Articles , 2008, ICWSM.

[30]  Rui Xia,et al.  Exploring the Use of Word Relation Features for Sentiment Classification , 2010, COLING.

[31]  Zhang Jianpei,et al.  Microblog sentiment analysis with weak dependency connections , 2017 .

[32]  Jae-Shin Lee,et al.  Collaborative Information Seeking in Intercultural Computer-Mediated Communication Groups , 2008, Commun. Res..

[33]  Jeffrey V. Nickerson,et al.  Discovering Context: Classifying Tweets through a Semantic Transform Based on Wikipedia , 2011, HCI.

[34]  Vadlamani Ravi,et al.  A survey on opinion mining and sentiment analysis: Tasks, approaches and applications , 2015, Knowl. Based Syst..

[35]  Yoojung Kim,et al.  Cultural difference in motivations for using social network sites: A comparative study of American and Korean college students , 2011, Comput. Hum. Behav..

[36]  Qinghua Zheng,et al.  Semi-supervised clue fusion for spammer detection in Sina Weibo , 2018, Inf. Fusion.

[37]  Mari Ostendorf,et al.  A Factored Neural Network Model for Characterizing Online Discussions in Vector Space , 2017, EMNLP.

[38]  Uzay Kaymak,et al.  Exploiting Emoticons in Polarity Classification of Text , 2015, J. Web Eng..

[39]  Yiqun Liu,et al.  Microblog Sentiment Analysis with Emoticon Space Model , 2014, Journal of Computer Science and Technology.

[40]  Saif Mohammad,et al.  Sentiment Analysis of Short Informal Texts , 2014, J. Artif. Intell. Res..

[41]  F. Schweitzer,et al.  Emotional persistence in online chatting communities , 2012, Scientific Reports.

[42]  Kevin Chen-Chuan Chang,et al.  Learning Community Embedding with Community Detection and Node Embedding on Graphs , 2017, CIKM.

[43]  Jure Leskovec,et al.  Can cascades be predicted? , 2014, WWW.

[44]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[45]  Ji-Young Kim,et al.  The emerging viewertariat in South Korea: The Seoul mayoral TV debate on Twitter, Facebook, and blogs , 2016, Telematics Informatics.

[46]  Jeffrey T. Hancock,et al.  Experimental evidence of massive-scale emotional contagion through social networks , 2014, Proceedings of the National Academy of Sciences.

[47]  Mingzhe Wang,et al.  LINE: Large-scale Information Network Embedding , 2015, WWW.

[48]  Long Jiang,et al.  User-level sentiment analysis incorporating social networks , 2011, KDD.

[49]  Jason Weston,et al.  Natural Language Processing (Almost) from Scratch , 2011, J. Mach. Learn. Res..

[50]  Erik Cambria,et al.  Affective Computing and Sentiment Analysis , 2016, IEEE Intelligent Systems.

[51]  Julio Villena-Román,et al.  TASS 2014 - The Challenge of Aspect-based Sentiment Analysis , 2015, Proces. del Leng. Natural.

[52]  Preslav Nakov,et al.  SemEval-2014 Task 9: Sentiment Analysis in Twitter , 2014, *SEMEVAL.

[53]  Christopher D. Manning,et al.  Baselines and Bigrams: Simple, Good Sentiment and Topic Classification , 2012, ACL.

[54]  Preslav Nakov,et al.  SemEval-2015 Task 10: Sentiment Analysis in Twitter , 2015, *SEMEVAL.

[55]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[56]  Erik Cambria,et al.  A review of affective computing: From unimodal analysis to multimodal fusion , 2017, Inf. Fusion.

[57]  Fangzhao Wu,et al.  Co-detecting social spammers and spam messages in microblogging via exploiting social contexts , 2016, Neurocomputing.

[58]  Jason Baldridge,et al.  Twitter Polarity Classification with Label Propagation over Lexical Links and the Follower Graph , 2011, ULNLP@EMNLP.

[59]  David Darmon,et al.  Followers Are Not Enough: A Multifaceted Approach to Community Detection in Online Social Networks , 2014, PloS one.

[60]  German Rigau Claramunt,et al.  A comparison of domain-based word polarity estimation using different word embeddings , 2016 .

[61]  Daniel J. Brass,et al.  Network Analysis in the Social Sciences , 2009, Science.

[62]  Francisco Herrera,et al.  Distinguishing between facts and opinions for sentiment analysis: Survey and challenges , 2018, Inf. Fusion.

[63]  Mireia Bolíbar,et al.  Macro, meso, micro: broadening the ‘social’ of social network analysis with a mixed methods approach , 2016 .

[64]  Kevin Chen-Chuan Chang,et al.  A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications , 2017, IEEE Transactions on Knowledge and Data Engineering.

[65]  Minh-Tien Nguyen,et al.  Social context summarization using user-generated content and third-party sources , 2017, Knowl. Based Syst..

[66]  Prem Melville,et al.  Sentiment analysis of blogs by combining lexical knowledge with text classification , 2009, KDD.

[67]  J. Fernando Sánchez-Rada,et al.  Enhancing deep learning sentiment analysis with ensemble techniques in social applications , 2020 .

[68]  Jon Atle Gulla,et al.  Sentiment Learning on Product Reviews via Sentiment Ontology Tree , 2010, ACL.

[69]  Wei Hu,et al.  Mutually Enhancing Community Detection and Sentiment Analysis on Twitter Networks , 2013 .

[70]  Maite Taboada,et al.  Lexicon-Based Methods for Sentiment Analysis , 2011, CL.

[71]  Bettina Berendt,et al.  Interactive Grouping of Friends in OSN: Towards Online Context Management , 2012, 2012 IEEE 12th International Conference on Data Mining Workshops.

[72]  Huan Liu,et al.  mTrust: discerning multi-faceted trust in a connected world , 2012, WSDM '12.

[73]  Jeonghee Yi,et al.  Sentiment analysis: capturing favorability using natural language processing , 2003, K-CAP '03.

[74]  Brendan T. O'Connor,et al.  Part-of-Speech Tagging for Twitter: Annotation, Features, and Experiments , 2010, ACL.

[75]  Hocine Cherifi,et al.  Qualitative Comparison of Community Detection Algorithms , 2011, DICTAP.

[76]  Jorge A. Balazs,et al.  Opinion Mining and Information Fusion: A survey , 2016, Inf. Fusion.

[77]  Tony White,et al.  Modelling Influence in a Social Network: Metrics and Evaluation , 2011, 2011 IEEE Third Int'l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int'l Conference on Social Computing.

[78]  Yiannis Kompatsiaris,et al.  Community detection in Social Media , 2012, Data Mining and Knowledge Discovery.

[79]  Ana-Maria Popescu,et al.  A Machine Learning Approach to Twitter User Classification , 2011, ICWSM.

[80]  Shubhamoy Dey,et al.  A comparative study of feature selection and machine learning techniques for sentiment analysis , 2012, RACS.

[81]  Heng Ji,et al.  Exploring and inferring user–user pseudo‐friendship for sentiment analysis with heterogeneous networks , 2014, Stat. Anal. Data Min..

[82]  Fuji Ren,et al.  Predicting User-Topic Opinions in Twitter with Social and Topical Context , 2013, IEEE Transactions on Affective Computing.

[83]  Bernard J. Jansen,et al.  Twitter power: Tweets as electronic word of mouth , 2009 .

[84]  Charu C. Aggarwal,et al.  Heterogeneous Network Embedding via Deep Architectures , 2015, KDD.

[85]  Annie Zaenen,et al.  Contextual Valence Shifters , 2006, Computing Attitude and Affect in Text.

[86]  Ronald Rousseau,et al.  Social network analysis: a powerful strategy, also for the information sciences , 2002, J. Inf. Sci..

[87]  Carlo Strapparava,et al.  Linguistic Linked Data for Sentiment Analysis , 2013, LDL.

[88]  David A. Shamma,et al.  Tweet the debates: understanding community annotation of uncollected sources , 2009, WSM@MM.

[89]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[90]  Elisabetta Fersini,et al.  Enhance User-Level Sentiment Analysis on Microblogs with Approval Relations , 2013, AI*IA.

[91]  Alan F. Smeaton,et al.  Combining Social Network Analysis and Sentiment Analysis to Explore the Potential for Online Radicalisation , 2009, 2009 International Conference on Advances in Social Network Analysis and Mining.

[92]  Takehiro Tokuda,et al.  Searching for Relevant Tweets Based on Topic-Related User Activities , 2016, J. Web Eng..