Study on Fluid-Induced Vibration Power Harvesting of Square Columns under Different Attack Angles

A model of the flow-vibration-electrical circuit multiphysical coupling system for solving square column vortex-induced vibration piezoelectric energy harvesting (VIVPEH) is proposed in this paper. The quasi steady state theory is adopted to describe the fluid solid coupling process of vortex-induced vibration based on the finite volume method coupled Gauss equation. The vibrational response and the quasi steady state form of the output voltage are solved by means of the matrix coefficient method and interactive computing. The results show that attack angles play an important role in the performance of square column VIVPEH, of which ° is a relatively ideal attack angle of square column VIVPEH.

[1]  Yiannis Andreopoulos,et al.  The performance of a self-excited fluidic energy harvester , 2012 .

[2]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[3]  A. Smits,et al.  Energy harvesting eel , 2001 .

[4]  Xiaotong Gao,et al.  Flow Energy Harvesting Using Piezoelectric Cantilevers With Cylindrical Extension , 2013, IEEE Transactions on Industrial Electronics.

[5]  Muhammad R. Hajj,et al.  Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder , 2013 .

[6]  Y. Andreopoulos,et al.  Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials , 2010 .

[7]  Abdessattar Abdelkefi,et al.  Nonlinear characterization of concurrent energy harvesting from galloping and base excitations , 2014 .

[8]  Joseph A. Paradiso,et al.  Energy Scavenging with Shoe-Mounted Piezoelectrics , 2001, IEEE Micro.

[9]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[10]  Junlei Wang,et al.  Energy Harvester Based on the Synchronization Phenomenon of a Circular Cylinder , 2014 .

[11]  Muhammad R. Hajj,et al.  Phenomena and modeling of piezoelectric energy harvesting from freely oscillating cylinders , 2012 .

[12]  Joseph R. Burns,et al.  The Energy Harvesting Eel: a small subsurface ocean/river power generator , 2001 .

[13]  Junlei Wang,et al.  Experimental Study on Piezoelectric Energy Harvesting from Vortex-Induced Vibrations and Wake-Induced Vibrations , 2016, J. Sensors.

[14]  Ali H. Nayfeh,et al.  Modeling and analysis of piezoaeroelastic energy harvesters , 2012 .

[15]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[16]  Shah Nitixaben Rajeshkumar,et al.  VIVACE (Vortex Induced Vibration Aquatic Clean Energy). A new concept in generation of clean and renewable energy from fluid flow , 2017 .

[17]  Kamaldev Raghavan,et al.  Enhancement of High Damping VIV Through Roughness Distribution for Energy Harnessing at 8×103 < Re < 1.5×105 , 2008 .

[18]  Kamaldev Raghavan,et al.  VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow , 2008 .

[19]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[20]  A. Barrero-Gil,et al.  Hysteresis in transverse galloping: The role of the inflection points , 2009 .

[21]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[22]  Abdessattar Abdelkefi,et al.  Modeling and performance analysis of cambered wing-based piezoaeroelastic energy harvesters , 2013 .

[23]  C. Williamson,et al.  Vortex-Induced Vibrations , 2004, Wind Effects on Structures.

[24]  Heath Hofmann,et al.  Adaptive piezoelectric energy harvesting circuit for wireless, remote power supply , 2001 .

[25]  Kevin J. Maki,et al.  Rans simulation vs. experiments of Flow Induced Motion of circular cylinder with passive turbulence control at 35,000 , 2011 .

[26]  Kamaldev Raghavan,et al.  Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports , 2011 .

[27]  Michael M. Bernitsas,et al.  VIV and galloping of single circular cylinder with surface roughness at 3.0×104≤Re≤1.2×105 , 2011 .

[28]  William P. Robbins,et al.  Wind-Generated Electrical Energy Using Flexible Piezoelectric Mateials , 2006 .

[29]  Kamaldev Raghavan,et al.  The VIVACE Converter: Model Tests at High Damping and Reynolds Number Around 105 , 2009 .

[30]  Michael M. Bernitsas,et al.  2-D URANS vs. experiments of flow induced motions of two circular cylinders in tandem with passive turbulence control for 30,000, 2013 .

[31]  Joseph A. Paradiso,et al.  Energy scavenging for mobile and wireless electronics , 2005, IEEE Pervasive Computing.

[32]  Michael M. Bernitsas,et al.  Virtual damper-spring system for VIV experiments and hydrokinetic energy conversion , 2011 .

[33]  Michael M. Bernitsas,et al.  High-damping, high-Reynolds VIV tests for energy harnessing using the VIVACE converter , 2011 .

[34]  Sheng Wen,et al.  Piezoelectric Wind Energy Harvesting from Self-Excited Vibration of Square Cylinder , 2016, J. Sensors.

[35]  Abdessattar Abdelkefi,et al.  Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations , 2014 .