Examination of the genetic basis for sexual dimorphism in the Aedes aegypti (dengue vector mosquito) pupal brain

[1]  S. Emrich,et al.  Examination of the genetic basis for sexual dimorphism in the Aedes aegypti (dengue vector mosquito) pupal brain , 2014, Biology of Sex Differences.

[2]  S. Vernes Genome wide identification of Fruitless targets suggests a role in upregulating genes important for neural circuit formation , 2014, Scientific Reports.

[3]  K. Mysore,et al.  Chitosan/siRNA nanoparticle targeting demonstrates a requirement for single-minded during larval and pupal olfactory system development of the vector mosquito Aedes aegypti , 2014, BMC Developmental Biology.

[4]  Stein Aerts,et al.  Male-Specific Fruitless Isoforms Target Neurodevelopmental Genes to Specify a Sexually Dimorphic Nervous System , 2014, Current Biology.

[5]  Erliang Zeng,et al.  Requirement for commissureless2 function during dipteran insect nerve cord development , 2013, Developmental dynamics : an official publication of the American Association of Anatomists.

[6]  R. Benton,et al.  Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. , 2013, Insect biochemistry and molecular biology.

[7]  Eunjoon Kim,et al.  Presynaptic Proteoglycans: Sweet Organizers of Synapse Development , 2013, Neuron.

[8]  D. Severson,et al.  Disruption of Aedes aegypti Olfactory System Development through Chitosan/siRNA Nanoparticle Targeting of semaphorin-1a , 2013, PLoS neglected tropical diseases.

[9]  G. Wilkinson,et al.  Sex-Biased Gene Expression during Head Development in a Sexually Dimorphic Stalk-Eyed Fly , 2013, PloS one.

[10]  D. Severson,et al.  Functional genetic characterization of salivary gland development in Aedes aegypti , 2013, EvoDevo.

[11]  K. Zito,et al.  Breaking It Down: The Ubiquitin Proteasome System in Neuronal Morphogenesis , 2013, Neural plasticity.

[12]  L. Alphey,et al.  The Orthologue of the Fruitfly Sex Behaviour Gene Fruitless in the Mosquito Aedes aegypti: Evolution of Genomic Organisation and Alternative Splicing , 2013, PloS one.

[13]  D. Small,et al.  Proteoglycans in the central nervous system: Role in development, neural repair, and Alzheimer's disease , 2013, IUBMB life.

[14]  Takashi Suzuki,et al.  Crabohydrate-Related Inhibitors of Dengue Virus Entry , 2013, Viruses.

[15]  E. Kravitz,et al.  Neural Circuitry Underlying Drosophila Female Postmating Behavioral Responses , 2012, Current Biology.

[16]  Nobuhiko Yamamoto,et al.  Shaping brain connections through spontaneous neural activity , 2012, The European journal of neuroscience.

[17]  R. Yu,et al.  Functional Roles of Gangliosides in Neurodevelopment: An Overview of Recent Advances , 2012, Neurochemical Research.

[18]  Gautier Koscielny,et al.  VectorBase: improvements to a bioinformatics resource for invertebrate vector genomics , 2011, Nucleic Acids Res..

[19]  H. Reichert,et al.  Brain development in the yellow fever mosquito Aedes aegypti: a comparative immunocytochemical analysis using cross-reacting antibodies from Drosophila melanogaster , 2011, Development Genes and Evolution.

[20]  Charles R. Tessier,et al.  Comparative Genomic Analysis of Drosophila melanogaster and Vector Mosquito Developmental Genes , 2011, PloS one.

[21]  B. S. Baker,et al.  Direct targets of the D. melanogaster DSXF protein and the evolution of sexual development , 2011, Development.

[22]  S. Behura,et al.  Semaphorin-1a Is Required for Aedes aegypti Embryonic Nerve Cord Development , 2011, PloS one.

[23]  S. Carroll,et al.  Sexually dimorphic regulation of the Wingless morphogen controls sex-specific segment number in Drosophila , 2011, Proceedings of the National Academy of Sciences.

[24]  R. J. Pitts,et al.  Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding , 2011, BMC Genomics.

[25]  R. Kraut Roles of sphingolipids in Drosophila development and disease , 2011, Journal of neurochemistry.

[26]  G. Saccone,et al.  Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti , 2011, BMC Evolutionary Biology.

[27]  K. Kimura Role of cell death in the formation of sexual dimorphism in the Drosophila central nervous system , 2011, Development, growth & differentiation.

[28]  D. Severson,et al.  siRNA-Mediated Gene Targeting in Aedes aegypti Embryos Reveals That Frazzled Regulates Vector Mosquito CNS Development , 2011, PloS one.

[29]  D. Severson,et al.  Whole-mount in situ hybridization for analysis of gene expression during Aedes aegypti development. , 2010, Cold Spring Harbor protocols.

[30]  D. Severson,et al.  Immunohistochemical analysis of protein expression during Aedes aegypti development. , 2010, Cold Spring Harbor protocols.

[31]  D. Severson,et al.  Functional analysis of genes in Aedes aegypti embryos. , 2010, Cold Spring Harbor protocols.

[32]  D. Severson,et al.  Aedes aegypti: an emerging model for vector mosquito development. , 2010, Cold Spring Harbor protocols.

[33]  D. Severson,et al.  Culturing and egg collection of Aedes aegypti. , 2010, Cold Spring Harbor protocols.

[34]  M. Duman-Scheel,et al.  Induction of cellular growth by the axon guidance regulators Netrin A and Semaphorin‐1a , 2010, Developmental neurobiology.

[35]  Elizabeth J. Rideout,et al.  Control of Sexual Differentiation and Behavior by the doublesex gene in Drosophila melanogaster , 2010, Nature Neuroscience.

[36]  J. Tower,et al.  Drosophila foxo acts in males to cause sexual-dimorphism in tissue-specific p53 life span effects , 2010, Experimental Gerontology.

[37]  Brad T. Sherman,et al.  Extracting Biological Meaning from Large Gene Lists with DAVID , 2009, Current protocols in bioinformatics.

[38]  Richard Weiszmann,et al.  Determination of gene expression patterns using high-throughput RNA in situ hybridization to whole-mount Drosophila embryos , 2009, Nature Protocols.

[39]  Leslie B. Vosshall,et al.  Variant Ionotropic Glutamate Receptors as Chemosensory Receptors in Drosophila , 2009, Cell.

[40]  G. Dimopoulos,et al.  Molecular analysis of photic inhibition of blood-feeding in Anopheles gambiae , 2008, BMC Physiology.

[41]  Shilpy Sharma,et al.  An Optimized Method for Histological Detection of Dopaminergic Neurons in Drosophila melanogaster , 2008, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[42]  B. Dickson Wired for Sex: The Neurobiology of Drosophila Mating Decisions , 2008, Science.

[43]  In-Hwan Jang,et al.  CLIP-domain serine proteases in Drosophila innate immunity. , 2008, BMB reports.

[44]  J. Billeter,et al.  The Sex-Determination Genes fruitless and doublesex Specify a Neural Substrate Required for Courtship Song , 2007, Current Biology.

[45]  C. Barillas-Mury CLIP proteases and Plasmodium melanization in Anopheles gambiae. , 2007, Trends in parasitology.

[46]  Alexander R. Pico,et al.  GenMAPP 2: new features and resources for pathway analysis , 2007, BMC Bioinformatics.

[47]  Evgeny M. Zdobnov,et al.  Genome Sequence of Aedes aegypti, a Major Arbovirus Vector , 2007, Science.

[48]  S. Di Giovanni,et al.  The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration , 2006, The EMBO journal.

[49]  R. Vogt,et al.  Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.); characterization of odorant-binding protein 10 and takeout. , 2005, Insect biochemistry and molecular biology.

[50]  E. J. Blitzer,et al.  Functional analysis of AeSCP‐2 using gene expression knockdown in the yellow fever mosquito, Aedes aegypti , 2005, Insect molecular biology.

[51]  Sunil Q. Mehta,et al.  Synaptojanin Is Recruited by Endophilin to Promote Synaptic Vesicle Uncoating , 2003, Neuron.

[52]  Dominique Debanne,et al.  Brain plasticity and ion channels , 2003, Journal of Physiology-Paris.

[53]  J. E. Sutcliffe,et al.  Tumour suppressors--a fly's perspective. , 2003, European journal of cancer.

[54]  Eric Wieschaus,et al.  Wg/Wnt signal can be transmitted through arrow/LRP5,6 and Axin independently of Zw3/Gsk3beta activity. , 2003, Developmental cell.

[55]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[56]  B. S. Baker,et al.  Sex comes in from the cold: the integration of sex and pattern. , 2002, Trends in genetics : TIG.

[57]  Jeffrey C. Hall,et al.  DOUBLESEX GENE EXPRESSION IN THE CENTRAL NERVOUS SYSTEM OF DROSOPHILA MELANOGASTER , 2002, Journal of neurogenetics.

[58]  S. Paskewitz,et al.  Serine proteases as mediators of mosquito immune responses. , 2001, Insect biochemistry and molecular biology.

[59]  B. Edgar,et al.  The Drosophila Cyclin D–Cdk4 complex promotes cellular growth , 2000, The EMBO journal.

[60]  B. Edgar,et al.  Drosophila Cdk4 is required for normal growth and is dispensable for cell cycle progression , 2000, The EMBO journal.

[61]  T. Kornberg,et al.  Ci: a complex transducer of the hedgehog signal. , 1999, Trends in genetics : TIG.

[62]  P. Kurada,et al.  Rab6 Regulation of Rhodopsin Transport inDrosophila * , 1998, The Journal of Biological Chemistry.

[63]  Jeffrey C. Hall,et al.  Control of Male Sexual Behavior and Sexual Orientation in Drosophila by the fruitless Gene , 1996, Cell.

[64]  R. Oppenheim,et al.  A serine protease inhibitor, protease nexin I, rescues motoneurons from naturally occurring and axotomy-induced cell death. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[65]  P. C. Wensink,et al.  Integrating sex- and tissue-specific regulation within a single Drosophila enhancer. , 1995, Genes & development.

[66]  P G Nelson,et al.  Proteolytic activity, synapse elimination, and the Hebb synapse. , 1994, Journal of neurobiology.

[67]  B. S. Baker,et al.  Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides , 1989, Cell.

[68]  D. Monard Cell-derived proteases and protease inhibitors as regulators of neurite outgrowth , 1988, Trends in Neurosciences.

[69]  DEPARTMENT OF BIOLOGICAL SCIENCES , 2014 .

[70]  M. Koganezawa,et al.  Fruitless and Doublesex Coordinate to Generate Male-Specific Neurons that Can Initiate Courtship , 2008, Neuron.

[71]  M. Van Doren,et al.  The creation of sexual dimorphism in the Drosophila soma. , 2008, Current Topics in Developmental Biology.

[72]  P. C. Wensink,et al.  Sex-specific transcriptional regulation by the male and female doublesex proteins of Drosophila. , 1993, Genes & development.

[73]  J. Schoonmaker,et al.  Cerebellar granule cell migration involves proteolysis. , 1990, Advances in experimental medicine and biology.

[74]  R. Greenspan,et al.  Learning and courtship in Drosophila: two stories with mutants. , 1984, Annual review of neuroscience.

[75]  M. S. Briscoe,et al.  Aedes Aegypti The Yellow Fever Mosquito, Its Life History, Bionomics And Structure , 1962 .