ASYMPTOTICS FOR POSTERIOR HAZARDS

An important issue in survival analysis is the investigation and the modeling of hazard rates. Within a Bayesian nonparametric framework, a natural and popular approach is to model hazard rates as kernel mixtures with respect to a completely random measure. In this paper we provide a comprehensive analysis of the asymptotic behavior of such models. We investigate consistency of the posterior distribution and derive fixed sample size central limit theorems for both linear and quadratic functionals of the posterior hazard rate. The general results are then specialized to various specific kernels and mixing measures yielding consistency under minimal conditions and neat central limit theorems for the distribution of functionals.

[1]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[2]  L. Schwartz On Bayes procedures , 1965 .

[3]  J. Kingman,et al.  Completely random measures. , 1967 .

[4]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[5]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[6]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. II , 1972, The Mathematical Gazette.

[7]  K. Doksum Tailfree and Neutral Random Probabilities and Their Posterior Distributions , 1974 .

[8]  A. V. Peterson Expressing the Kaplan-Meier estimator as a function of empirical subsurvival functions , 1977 .

[9]  Purushottam W. Laud,et al.  A Bayesian Nonparametric Approach to Reliability , 1981 .

[10]  O. Kallenberg Random Measures , 1983 .

[11]  Albert Y. Lo,et al.  On a class of Bayesian nonparametric estimates: II. Hazard rate estimates , 1989 .

[12]  D. Freedman,et al.  On the consistency of Bayes estimates , 1986 .

[13]  N. Hjort Nonparametric Bayes Estimators Based on Beta Processes in Models for Life History Data , 1990 .

[14]  Grace L. Yang,et al.  On Bayes Procedures , 1990 .

[15]  J. Ghosh,et al.  Consistency of Bayesian inference for survival analysis with or without censoring , 1995 .

[16]  G. Rota,et al.  STOCHASTIC INTEGRALS: A COMBINATORIAL APPROACH , 1997 .

[17]  L. Wasserman,et al.  The consistency of posterior distributions in nonparametric problems , 1999 .

[18]  Yongdai Kim NONPARAMETRIC BAYESIAN ESTIMATORS FOR COUNTING PROCESSES , 1999 .

[19]  J. Ghosh,et al.  POSTERIOR CONSISTENCY OF DIRICHLET MIXTURES IN DENSITY ESTIMATION , 1999 .

[20]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[21]  A. Brix Generalized Gamma measures and shot-noise Cox processes , 1999, Advances in Applied Probability.

[22]  Yongdai Kim,et al.  On posterior consistency of survival models , 2001 .

[23]  S. Walker On sufficient conditions for Bayesian consistency , 2003 .

[24]  R. Ramamoorthi,et al.  Consistency of Dykstra-Laud priors , 2003 .

[25]  Lancelot F. James Bayesian calculus for gamma processes with applications to semiparametric intensity models , 2003 .

[26]  A. Lijoi,et al.  Distributional results for means of normalized random measures with independent increments , 2003 .

[27]  Yongdai Kim On the Posterior Consistency of Mixtures of Dirichlet Process Priors with Censored Data , 2003 .

[28]  S. Walker New approaches to Bayesian consistency , 2004, math/0503672.

[29]  Hemant Ishwaran,et al.  Computational Methods for Multiplicative Intensity Models Using Weighted Gamma Processes , 2004 .

[30]  Stephen G. Walker,et al.  Bayesian nonparametric survival analysis via Levy driven Markov processes , 2004 .

[31]  A Semi-parametric Bayesian Analysis of Survival Data Based on Lévy-driven Processes , 2005, Lifetime data analysis.

[32]  Lancelot F. James Bayesian Poisson process partition calculus with an application to Bayesian Lévy moving averages , 2005, math/0508283.

[33]  A Bayes method for a monotone hazard rate via S-paths , 2005, math/0502432.

[34]  Igor Prunster,et al.  Linear and quadratic functionals of random hazard rates: An asymptotic analysis , 2006, math/0611652.

[35]  S. Ghosal,et al.  Kullback Leibler property of kernel mixture priors in Bayesian density estimation , 2007, 0710.2746.

[36]  S. Walker,et al.  Posterior analysis for some classes of nonparametric models , 2008 .

[37]  Michael,et al.  On a Class of Bayesian Nonparametric Estimates : I . Density Estimates , 2008 .

[38]  M. Taqqu,et al.  Central limit theorems for double Poisson integrals , 2008, 0810.4432.