Study of chirping toroidicity-induced Alfvén eigenmodes in the National Spherical Torus Experiment

Chirping toroidicity-induced Alfvén eigenmodes (TAEs) are destabilized during neutral beam injection on the National Spherical Torus Experiment (NSTX (Ono M. et al 2000 Nucl. Fusion 40 557)) by super-Alfvénic ions with velocities up to five times larger than the Alfvén velocity. TAEs exhibit repeated bursts in amplitude and down-chirps in frequency. Larger bursts, so-called TAE avalanches, are eventually observed and correlate with a loss of fast ions up to 30% over ∼1 ms. Frequency, amplitude and radial structure of TAEs are characterized via magnetic pickup coils and a multi-channel reflectometer system. The modes have a broad radial structure, which appears to be unaffected by the large frequency and amplitude variations. However, the large mode amplitude does impact the modes' dynamics by favouring the coupling among different modes. In addition, the coupling involves kink-like modes and can therefore degrade the thermal plasma confinement. In spite of the non-linear regime characterizing the TAE dynamics, the measured properties are found to be in reasonable agreement with solutions from the ideal MHD code NOVA.

[1]  Boris N. Breizman,et al.  12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems , 2014 .

[2]  E. A. Kuznetsov,et al.  Solitons and collapses: two evolution scenarios of nonlinear wave systems , 2012 .

[3]  R. Bell,et al.  A real-time velocity diagnostic for NSTX. , 2012, The Review of scientific instruments.

[4]  V. Marchenko,et al.  Frequency chirping during a fishbone burst , 2011 .

[5]  K. Tritz,et al.  High spatial sampling global mode structure measurements via multichannel reflectometry in NSTX , 2011 .

[6]  D. Pace,et al.  Characterization of off-axis fishbones , 2011, Plasma Physics and Controlled Fusion.

[7]  R. Bell,et al.  Non-linear dynamics of toroidicity-induced Alfvén eigenmodes on the National Spherical Torus Experiment , 2011 .

[8]  R. Bell,et al.  Calculation of the non-inductive current profile in high-performance NSTX plasmas , 2011 .

[9]  X. Garbet,et al.  Spectroscopic determination of kinetic parameters for frequency sweeping Alfvén eigenmodes , 2010 .

[10]  R. Bell,et al.  Effects of toroidal rotation shear on toroidicity-induced Alfvén eigenmodes in the National Spherical Torus Experiment , 2010 .

[11]  H. Berk,et al.  Quasilinear Model for Energetic Particles Interacting with TAE Modes , 2010 .

[12]  W. Heidbrink,et al.  Fast-ion Dα measurements of the fast-ion distribution (invited). , 2010, The Review of scientific instruments.

[13]  S. Sharapov,et al.  Effect of dynamical friction on nonlinear energetic particle modes , 2010 .

[14]  R. Andre,et al.  Comparison of poloidal velocity measurements to neoclassical theory on the National Spherical Torus Experimenta) , 2010 .

[15]  V. Lutsenko,et al.  Mode coupling in Alfvén instabilities , 2010 .

[16]  Jet Efda Contributors,et al.  Experimental verification of sawtooth control by energetic particles in ion cyclotron resonance heated JET tokamak plasmas , 2010 .

[17]  K. Tritz,et al.  Modeling fast-ion transport during toroidal Alfvén eigenmode avalanches in National Spherical Torus Experiment , 2009 .

[18]  R. Bell Comparison of poloidal velocity measurements to neoclassical theory on NSTX , 2009 .

[19]  John W. Berkery,et al.  The Role of Kinetic Effects, Including Plasma Rotation and Energetic Particles, in Resistive Wall Mode Stability , 2009 .

[20]  G. Fu,et al.  Gyrokinetic δf particle simulations of toroidicity-induced Alfvén eigenmode , 2009 .

[21]  R. Bell,et al.  Experimental studies on fast-ion transport by Alfven wave avalanches on the National Spherical Torus Experiment , 2009 .

[22]  R. Bell,et al.  The NSTX fast-ion D-alpha diagnostic. , 2008, The Review of scientific instruments.

[23]  B. LeBlanc Thomson scattering density calibration by Rayleigh and rotational Raman scattering on NSTX. , 2008, The Review of scientific instruments.

[24]  F. Levinton,et al.  The motional Stark effect diagnostic on NSTX. , 2008, The Review of scientific instruments.

[25]  L. Chen,et al.  Nonlinear Dynamics and Complex Behaviors in Magnetized Plasmas of Fusion Interest , 2008 .

[26]  G. Fu Nonlinear Hybrid Simulations of Multiple Energetic Particle driven Alfven Modes in Toroidal Plasmas , 2007 .

[27]  F. Levinton,et al.  β suppression of Alfvén cascade modes in the National Spherical Torus Experiment , 2007 .

[28]  E. Fredrickson,et al.  Three-wave interactions between fast-ion modes in the National Spherical Torus Experiment. , 2006, Physical review letters.

[29]  L. Chen,et al.  Transition from weak to strong energetic ion transport in burning plasmas , 2005 .

[30]  H. Berk,et al.  Beam anisotropy effect on Alfvén eigenmode stability in ITER-like plasmas , 2004 .

[31]  S. Sharapov,et al.  Beta-dependence of energetic particle-driven instabilities in spherical tokamaks , 2004 .

[32]  G. Bateman,et al.  The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library , 2004 .

[33]  R. Andre,et al.  MHD-induced energetic ion loss during H-mode discharges in the National Spherical Torus Experiment , 2004 .

[34]  R. Andre,et al.  MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX) , 2004 .

[35]  R. Welland,et al.  Agile Web Engineering (AWE) Process: Multidisciplinary Stakeholders and Team Communication , 2003, ICWE.

[36]  Current Drive ITER Physics Basis Chapter 5: Physics of energetic ions , 2000 .

[37]  M. Viola,et al.  Exploration of spherical torus physics in the NSTX device , 2000 .

[38]  M. Rosenbluth,et al.  Chapter 5: Physics of energetic ions , 1999 .

[39]  W. Park,et al.  Plasma simulation studies using multilevel physics models , 1999 .

[40]  B. Breizman,et al.  Line broadened quasi-linear burst model [fusion plasma] , 1995 .

[41]  W. Heidbrink Beam-driven chirping instability in DIII-D , 1995 .

[42]  M. Pekker,et al.  Numerical simulation of bump‐on‐tail instability with source and sink , 1995 .

[43]  E. Strait,et al.  Doppler shift of the TAE mode frequency in DIII-D , 1994 .

[44]  W. Kerner,et al.  Solution of the drift‐kinetic equation for global plasma modes and finite particle orbit widths , 1994 .

[45]  H. Berk,et al.  Arbitrary mode number boundary‐layer theory for nonideal toroidal Alfvén modes , 1993 .

[46]  Chio-Zong Cheng,et al.  Kinetic extensions of magnetohydrodynamics for axisymmetric toroidal plasmas , 1992 .

[47]  M. Rosenbluth,et al.  Mode structure and continuum damping of high‐n toroidal Alfvén eigenmodes* , 1992 .

[48]  M. S. Chance,et al.  Low-n shear Alfven spectra in axisymmetric toroidal plasmas , 1986 .

[49]  E. Powers,et al.  Digital Bispectral Analysis and Its Applications to Nonlinear Wave Interactions , 1979, IEEE Transactions on Plasma Science.

[50]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[51]  H. Berk,et al.  Simulation and adiabatic models for spontaneous frequency sweeping of energetic particle-driven Alfvén eigenmodes , 2011 .

[52]  R. Bell,et al.  Non-linear dynamics of toroidicity-induced Alfv´en eigenmodes on the National Spherical Torus Experiment , 2011 .

[53]  W. Heidbrink FAST-ION D-ALPHA MEASUREMENTS OF THE FAST-ION DISTRIBUTION FUNCTION , 2010 .

[54]  S. Günter IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems , 2008 .

[55]  H. Yuh,et al.  The Motional Stark Effect diagnostic on Alcator C-Mod , 2005 .

[56]  S. Sharapov,et al.  Nonlinear splitting of fast particle driven waves in a plasma: observation and theory , 1998 .

[57]  Lennart Stenflo,et al.  Resonant three-wave interactions in plasmas , 1994 .

[58]  L. Stenflo,et al.  EXPLOSIVE INSTABILITIES IN THE WELL-DEFINED PHASE DESCRIPTION. , 1970 .