(2+1) dimensional Rossby waves with complete Coriolis force and its solution by homotopy perturbation method

[1]  Carl Eckart,et al.  Hydrodynamics of oceans and atmospheres , 1960 .

[2]  Robert R. Long,et al.  Solitary Waves in the Westerlies , 1964 .

[3]  Norman A. Phillips,et al.  The Equations of Motion for a Shallow Rotating Atmosphere and the “Traditional Approximation” , 1966 .

[4]  D. J. Benney Long Non‐Linear Waves in Fluid Flows , 1966 .

[5]  George Veronis,et al.  Comments on Phillips' Proposed Simplification of the Equations of Motion for a Shallow Rotating Atmosphere , 1968 .

[6]  R. K. Wangsness Comments on `The Equations of Motion for a Shallow Rotating Atmosphere and the Traditional Approximation''. , 1970 .

[7]  P. R. Julian,et al.  Detection of a 40–50 Day Oscillation in the Zonal Wind in the Tropical Pacific , 1971 .

[8]  P. R. Julian,et al.  Description of Global-Scale Circulation Cells in the Tropics with a 40–50 Day Period , 1972 .

[9]  M. Wadati,et al.  The Modified Korteweg-de Vries Equation , 1973 .

[10]  L. Redekopp,et al.  On the theory of solitary Rossby waves , 1977, Journal of Fluid Mechanics.

[11]  Larry G. Redekopp,et al.  Solitary Rossby waves in zonal shear flows and their interactions. [in Jupiter atmosphere] , 1978 .

[12]  John P. Boyd,et al.  Equatorial Solitary Waves. Part I: Rossby Solitons , 1980 .

[13]  Hiroaki Ono,et al.  Algebraic Rossby Wave Soliton , 1981 .

[14]  John P. Boyd Equatorial Solitary Waves. Part 2: Envelope Solitons , 1983 .

[15]  Luo Dehai,et al.  A THEORY OF BLOCKING FORMATION IN THE ATMOSPHERE , 1990 .

[16]  George Adomian,et al.  A review of the decomposition method and some recent results for nonlinear equations , 1990 .

[17]  Liu Shi-kuo,et al.  Rossby waves with the change of β , 1992 .

[18]  A. White,et al.  Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force , 1995 .

[19]  Mingliang Wang,et al.  Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics , 1996 .

[20]  Ji-Huan He Homotopy perturbation technique , 1999 .

[21]  Zuntao Fu,et al.  New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations , 2001 .

[22]  Zuntao Fu,et al.  JACOBI ELLIPTIC FUNCTION EXPANSION METHOD AND PERIODIC WAVE SOLUTIONS OF NONLINEAR WAVE EQUATIONS , 2001 .

[23]  A. Kasahara,et al.  On the Nonhydrostatic Atmospheric Models with Inclusion of the Horizontal Component of the Earth’s Angular Velocity , 2003 .

[24]  R. Salmon,et al.  Shallow water equations with a complete Coriolis force and topography , 2005 .

[25]  Zuntao Fu,et al.  Multiple structures of two-dimensional nonlinear Rossby wave , 2005 .

[26]  T. Gerkema,et al.  Near-inertial waves on the “nontraditional” β plane , 2005 .

[27]  Ji-Huan He SOME ASYMPTOTIC METHODS FOR STRONGLY NONLINEAR EQUATIONS , 2006 .

[28]  Georg A. Gottwald,et al.  The Zakharov-Kuznetsov Equation as a Two-Dimensional Model for Nonlinear Rossby Waves , 2003, nlin/0312009.

[29]  Roger H.J. Grimshaw,et al.  Rossby Elevation Waves in the Presence of a Critical Layer , 2007 .

[30]  Hiroaki Miura,et al.  A Madden-Julian Oscillation Event Realistically Simulated by a Global Cloud-Resolving Model , 2007, Science.

[31]  T. Shepherd,et al.  Symmetric Stability of Compressible Zonal Flows on a Generalized Equatorial β Plane , 2008 .

[32]  M. A. Abdou New solitons and periodic wave solutions for nonlinear physical models , 2008 .

[33]  Song Jian,et al.  Modified KdV equation for solitary Rossby waves with β effect in barotropic fluids , 2009 .

[34]  Jafar Biazar,et al.  Application of homotopy perturbation method for systems of Volterra integral equations of the first kind , 2009 .

[35]  T. Itano,et al.  Symmetric Stability of Zonal Flow under Full-Component Coriolis Force —Effect of the Horizontal Component of the Planetary Vorticity— , 2009 .

[36]  Yao-Dong Yu,et al.  The auxiliary equation method for solving the Zakharov-Kuznetsov (ZK) equation , 2009, Comput. Math. Appl..

[37]  E. Maloney,et al.  Intraseasonal Variability in an Aquaplanet General Circulation Model , 2010 .

[38]  E. Maloney,et al.  Effect of SST Distribution and Radiative Feedbacks on the Simulation of Intraseasonal Variability in , 2011 .

[39]  Jafar Biazar,et al.  Modified HPM for solving systems of Volterra integral equations of the second kind , 2011 .

[40]  Jafar Biazar,et al.  A new homotopy perturbation method for solving systems of partial differential equations , 2011, Comput. Math. Appl..

[41]  T. Itano,et al.  Effect of Top and Bottom Boundary Conditions on Symmetric Instability under Full-Component Coriolis Force , 2011 .

[42]  P. Dellar Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton's principle on a sphere , 2011, Journal of Fluid Mechanics.

[43]  Yi Zhang,et al.  Hirota bilinear equations with linear subspaces of solutions , 2012, Appl. Math. Comput..

[44]  J. Biazar,et al.  A new method for solving the hyperbolic telegraph equation , 2012 .

[45]  Michiya Hayashi,et al.  The Importance of the Nontraditional Coriolis Terms in Large-Scale Motions in the Tropics Forced by Prescribed Cumulus Heating , 2012 .

[46]  J. Biazar,et al.  A new technique for non-linear two-dimensional wave equations , 2013 .

[47]  Hassan A. Zedan,et al.  Exact solutions for a perturbed nonlinear Schrödinger equation by using Bäcklund transformations , 2013 .

[48]  Hongwei Yang,et al.  A kind of new algebraic Rossby solitary waves generated by periodic external source , 2014 .

[49]  M. Eslami An Efficient Method for Solving Fractional Partial Differential Equations , 2014 .

[50]  Mostafa Eslami,et al.  Study of convergence of Homotopy perturbation method for two-dimensional linear Volterra integral equations of the first kind , 2014, Int. J. Comput. Sci. Math..

[51]  Mostafa Eslami,et al.  New Homotopy Perturbation Method for a Special Kind of Volterra Integral Equations in Two-Dimensional Space , 2014 .

[52]  Chen Yao-deng,et al.  A new model for algebraic Rossby solitary waves in rotation fluid and its solution , 2015 .

[53]  Baoshu Yin,et al.  Interaction of algebraic Rossby solitary waves with topography and atmospheric blocking , 2015 .

[54]  Zhenhua Xu,et al.  ZK-Burgers equation for three-dimensional Rossby solitary waves and its solutions as well as chirp effect , 2016 .