Quantum memories at finite temperature

To use quantum systems for technological applications one first needs to preserve their coherence for macroscopic time scales, even at finite temperature. Quantum error correction has made it possible to actively correct errors that affect a quantum memory. An attractive scenario is the construction of passive storage of quantum information with minimal active support. Indeed, passive protection is the basis of robust and scalable classical technology, physically realized in the form of the transistor and the ferromagnetic hard disk. The discovery of an analogous quantum system is a challenging open problem, plagued with a variety of no-go theorems. Several approaches have been devised to overcome these theorems by taking advantage of their loopholes. The state-of-the-art developments in this field are reviewed in an informative and pedagogical way. The main principles of self-correcting quantum memories are given and several milestone examples from the literature of two-, three- and higher-dimensional quantum memories are analyzed.

[1]  K. Laidler Unconventional applications of the Arrhenius law , 1972 .

[2]  Norbert Schuch,et al.  How long can a quantum memory withstand depolarizing noise? , 2009, Physical review letters.

[3]  Paolo Zanardi Stabilizing quantum information , 2000 .

[4]  H. Bombin,et al.  Topological computation without braiding. , 2007, Physical review letters.

[5]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[6]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  James R. Wootton,et al.  High threshold error correction for the surface code. , 2012, Physical review letters.

[8]  David Poulin,et al.  Fault-tolerant conversion between the Steane and Reed-Muller quantum codes. , 2014, Physical review letters.

[9]  D. DiVincenzo,et al.  Majorana Braiding with Thermal Noise. , 2015, Physical review letters.

[10]  James R. Wootton,et al.  Error Correction for Non-Abelian Topological Quantum Computation , 2014 .

[11]  R. Feynman Simulating physics with computers , 1999 .

[12]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[13]  John B. Kogut,et al.  An introduction to lattice gauge theory and spin systems , 1979 .

[14]  D. Poulin Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.

[15]  B. Terhal,et al.  Topological order in an exactly solvable 3D spin model , 2010, 1006.4871.

[16]  Eduardo R. Mucciolo,et al.  Fidelity Threshold of the Surface Code Beyond Single-Qubit Error Models , 2014 .

[17]  A. Doherty,et al.  Toric codes and quantum doubles from two-body Hamiltonians , 2010, 1011.1942.

[18]  T. Osborne,et al.  Interplay of topological order and spin glassiness in the toric code under random magnetic fields , 2010, 1004.4632.

[19]  Jeongwan Haah Bifurcation in entanglement renormalization group flow of a gapped spin model , 2013, 1310.4507.

[20]  Sergey Bravyi,et al.  Topological quantum order: Stability under local perturbations , 2010, 1001.0344.

[21]  Kamil Michnicki,et al.  3-d quantum stabilizer codes with a power law energy barrier , 2012, 1208.3496.

[22]  C. Bonati The Peierls argument for higher dimensional Ising models , 2014, 1401.7894.

[23]  D. Perez-Garcia,et al.  Thermal states of anyonic systems , 2008, 0812.4975.

[24]  Andrew W. Cross,et al.  Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.

[25]  Paweł Mazurek,et al.  Simple scheme for encoding and decoding a qubit in unknown state for various topological codes , 2014, Scientific Reports.

[26]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[27]  Maissam Barkeshli,et al.  Twist defects and projective non-Abelian braiding statistics , 2012, 1208.4834.

[28]  Claudio Chamon,et al.  Quantum glassiness in strongly correlated clean systems: an example of topological overprotection. , 2004, Physical review letters.

[29]  James R. Wootton,et al.  Enhanced thermal stability of the toric code through coupling to a bosonic bath , 2013, 1309.0621.

[30]  Matthew B Hastings,et al.  Topological order at nonzero temperature. , 2011, Physical review letters.

[31]  Robert König,et al.  Disorder-Assisted Error Correction in Majorana Chains , 2011, 1108.3845.

[32]  Martin Suchara,et al.  Constructions and noise threshold of topological subsystem codes , 2010, Journal of Physics A: Mathematical and Theoretical.

[33]  S. Bravyi,et al.  Quantum self-correction in the 3D cubic code model. , 2013, Physical review letters.

[34]  James R. Wootton Topological phases and self-correcting memories in interacting anyon systems , 2013, 1305.1808.

[35]  Aram W. Harrow,et al.  Sparse Quantum Codes From Quantum Circuits , 2014, IEEE Transactions on Information Theory.

[36]  K. Saeedi,et al.  Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28 , 2013, Science.

[37]  D. DiVincenzo,et al.  Quantum simulation of many-body Hamiltonians using perturbation theory with bounded-strength interactions. , 2008, Physical review letters.

[38]  K. Temme Thermalization Time Bounds for Pauli Stabilizer Hamiltonians , 2014, 1412.2858.

[39]  H. Bombin Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes , 2013, 1311.0879.

[40]  Geoffrey Grinstein,et al.  Can complex structures be generically stable in a noisy world? , 2004, IBM J. Res. Dev..

[41]  Garrahan,et al.  Glassiness and constrained dynamics of a short-range nondisordered spin model , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[43]  Á. Rivas,et al.  Generalized toric codes coupled to thermal baths , 2011, 1112.1017.

[44]  V. Vedral,et al.  Classification of macroscopic quantum effects , 2014, 1406.0659.

[45]  Isaac H. Kim 3D local qupit quantum code without string logical operator , 2012, 1202.0052.

[46]  Panos Aliferis,et al.  Subsystem fault tolerance with the Bacon-Shor code. , 2007, Physical review letters.

[47]  K. Kugel,et al.  The Jahn-Teller effect and magnetism: transition metal compounds , 1982 .

[48]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[49]  H. Bombin,et al.  Single-Shot Fault-Tolerant Quantum Error Correction , 2014, 1404.5504.

[50]  J. Yeomans,et al.  Statistical mechanics of phase transitions , 1992 .

[51]  D. Awschalom,et al.  A quantum memory intrinsic to single nitrogen-vacancy centres in diamond , 2011 .

[52]  Adam Paetznick,et al.  Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.

[53]  Z. Nussinov,et al.  Effective and exact holographies from symmetries and dualities , 2011, 1110.2179.

[54]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[55]  Tomas Jochym-O'Connor,et al.  Classification of transversal gates in qubit stabilizer codes , 2016, Quantum Inf. Comput..

[56]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[57]  R. Peierls On Ising's model of ferromagnetism , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[58]  Jiannis K. Pachos,et al.  Decoherence-free dynamical and geometrical entangling phase gates (9 pages) , 2004 .

[59]  Sergey Bravyi,et al.  Classification of topologically protected gates for local stabilizer codes. , 2012, Physical review letters.

[60]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[61]  S. Sides,et al.  Magnetization switching in nanoscale ferromagnetic grains: description by a kinetic Ising model , 1994, cond-mat/9412120.

[62]  M. Fannes,et al.  Decay of fidelity in terms of correlation functions , 2008, 0809.4180.

[63]  James R. Wootton,et al.  Efficient Markov chain Monte Carlo algorithm for the surface code , 2013, 1302.2669.

[64]  Topological quantum glassiness , 2011, 1108.2051.

[65]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[66]  Matthew B. Hastings,et al.  Quantum systems on non-k-hyperfinite complexes: a generalization of classical statistical mechanics on expander graphs , 2013, Quantum Inf. Comput..

[67]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[68]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[69]  D. DiVincenzo,et al.  Schrieffer-Wolff transformation for quantum many-body systems , 2011, 1105.0675.

[70]  Liang Kong,et al.  Models for Gapped Boundaries and Domain Walls , 2011, 1104.5047.

[71]  A. Frigerio,et al.  Stationary states of quantum dynamical semigroups , 1978 .

[72]  Tetsufumi Tanamoto,et al.  Dynamic generation of topologically protected self-correcting quantum memory , 2013, 1302.3998.

[73]  Andrew W. Cross,et al.  Transversality Versus Universality for Additive Quantum Codes , 2007, IEEE Transactions on Information Theory.

[74]  Xiao-Gang Wen,et al.  Classification of gapped symmetric phases in one-dimensional spin systems , 2010, 1008.3745.

[75]  A. Kay Capabilities of a perturbed toric code as a quantum memory. , 2011, Physical review letters.

[76]  Earl T. Campbell,et al.  Cellular-automaton decoders for topological quantum memories , 2014, npj Quantum Information.

[77]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[78]  T. Karzig,et al.  Exponential lifetime improvement in topological quantum memories , 2015, 1512.04528.

[79]  Jeongwan Haah Commuting Pauli Hamiltonians as Maps between Free Modules , 2012, 1204.1063.

[80]  Steven H. Simon,et al.  Passive correction of quantum logical errors in a driven, dissipative system: A blueprint for an analog quantum code fabric , 2014, 1408.0959.

[81]  A. B. Bortz,et al.  A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .

[82]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[83]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[84]  David Poulin,et al.  Operator quantum error correction , 2006, Quantum Inf. Comput..

[85]  H. Bombin,et al.  Topological order with a twist: Ising anyons from an Abelian model. , 2010, Physical review letters.

[86]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[87]  Anthony J Leggett,et al.  Influence of Dissipation on Quantum Tunneling in Macroscopic Systems , 1981 .

[88]  B. Terhal,et al.  A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes , 2008, 0810.1983.

[89]  Matthew B Hastings,et al.  Self-correcting quantum memories beyond the percolation threshold. , 2014, Physical review letters.

[90]  J. Kogut,et al.  Hamiltonian Formulation of Wilson's Lattice Gauge Theories , 1975 .

[91]  Zohar Nussinov,et al.  Sufficient symmetry conditions for Topological Quantum Order , 2009, Proceedings of the National Academy of Sciences.

[92]  H. Bombin,et al.  Self-correcting quantum computers , 2009, 0907.5228.

[93]  Fernando Pastawski,et al.  Quantum memories based on engineered dissipation , 2010, 1010.2901.

[94]  Herbert Spohn,et al.  An algebraic condition for the approach to equilibrium of an open N-level system , 1977 .

[95]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[96]  David Poulin,et al.  Fast decoders for topological quantum codes. , 2009, Physical review letters.

[97]  Robert B. Griffiths,et al.  Peierls Proof of Spontaneous Magnetization in a Two-Dimensional Ising Ferromagnet , 1964 .

[98]  J. Preskill,et al.  Perturbative instability of quantum memory based on effective long-range interactions , 2015 .

[99]  Martin S. Kochma'nski,et al.  Curie–Weiss magnet—a simple model of phase transition , 2013, 1301.2141.

[100]  Michael E. Beverland,et al.  Universal transversal gates with color codes: A simplified approach , 2014, 1410.0069.

[101]  M. Troyer,et al.  Breakdown of a topological phase: quantum phase transition in a loop gas model with tension. , 2006, Physical review letters.

[102]  Ying Li,et al.  Quasiparticle localisation via frequent measurements , 2013, Quantum Inf. Comput..

[103]  S. Barrett,et al.  The Ising ferromagnet as a self-correcting physical memory: a Monte-Carlo study , 2012, 1201.0390.

[104]  Jeongwan Haah Local stabilizer codes in three dimensions without string logical operators , 2011, 1101.1962.

[105]  Paolo Zanardi,et al.  Ground state entanglement and geometric entropy in the Kitaev model , 2005 .

[106]  David Poulin,et al.  Thermalization, Error-Correction, and Memory Lifetime for Ising Anyon Systems , 2013, 1311.0019.

[107]  S. Bravyi Subsystem codes with spatially local generators , 2010, 1008.1029.

[108]  D. Bacon,et al.  Quantum Error Correcting Subsystem Codes From Two Classical Linear Codes , 2006, quant-ph/0610088.

[109]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[110]  Guang-Can Guo,et al.  Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997 .

[111]  John Preskill,et al.  Logical-operator tradeoff for local quantum codes , 2010, 1011.3529.

[112]  F. Wegner Duality in Generalized Ising Models and Phase Transitions without Local Order Parameters , 1971 .

[113]  Oded Zilberberg,et al.  Controlled-NOT gate for multiparticle qubits and topological quantum computation based on parity measurements , 2007, 0708.1062.

[114]  C. Nayak,et al.  Quasi-Topological Phases of Matter and Topological Protection , 2012, 1212.6395.

[115]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[116]  Isaac H. Kim,et al.  Localization from Superselection Rules in Translationally Invariant Systems. , 2015, Physical review letters.

[117]  Bipartite entanglement and entropic boundary law in lattice spin systems (10 pages) , 2004, quant-ph/0409073.

[118]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[119]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[120]  Knight,et al.  Quantum computing using dissipation to remain in a decoherence-free subspace , 2000, Physical review letters.

[121]  Claudio Chamon,et al.  Toric-boson model: Toward a topological quantum memory at finite temperature , 2008, 0812.4622.

[122]  K. Walker,et al.  (3+1)-TQFTs and topological insulators , 2011, 1104.2632.

[123]  D. Loss,et al.  Self-correcting quantum memory in a thermal environment , 2009, 0908.4264.

[124]  James R. Wootton,et al.  Bringing order through disorder: localization of errors in topological quantum memories. , 2011, Physical review letters.

[125]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[126]  K. Temme,et al.  Necessity of an energy barrier for self-correction of Abelian quantum doubles , 2016 .

[127]  Kamil P Michnicki,et al.  3D topological quantum memory with a power-law energy barrier. , 2014, Physical review letters.

[128]  Spontaneous magnetization of the Ising model on the Sierpinski carpet fractal, a rigorous result , 2002, cond-mat/0212497.

[129]  E.N.M. Cirillo,et al.  Metastability in the Two-Dimensional Ising Model with Free Boundary Conditions , 1998 .

[130]  Cyril J. Stark,et al.  Localization of toric code defects. , 2011, Physical review letters.

[131]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[132]  David Poulin,et al.  Local topological order inhibits thermal stability in 2D. , 2012, Physical review letters.

[133]  Earl T. Campbell,et al.  Qudit color codes and gauge color codes in all spatial dimensions , 2015, 1503.08800.

[134]  J. Pachos,et al.  Why should anyone care about computing with anyons? , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[135]  A. Kossakowski,et al.  On quantum statistical mechanics of non-Hamiltonian systems , 1972 .

[136]  David Poulin,et al.  The Trotter step size required for accurate quantum simulation of quantum chemistry , 2014, Quantum Inf. Comput..

[137]  M. A. Martin-Delgado,et al.  Quantum measurements and gates by code deformation , 2007, 0704.2540.

[138]  C Moore,et al.  Glassy dynamics and aging in an exactly solvable spin model. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[139]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[140]  Greg Kuperberg,et al.  Quantum computation with Turaev–Viro codes , 2010, 1002.2816.

[141]  D. Loss,et al.  Majorana qubit decoherence by quasiparticle poisoning , 2012, 1204.3326.

[142]  M. Fannes,et al.  On thermalization in Kitaev's 2D model , 2008, 0810.4584.

[143]  Robert Alicki,et al.  Quantum memory as a perpetuum mobile of the second kind , 2009 .

[144]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[145]  B. Terhal,et al.  Tradeoffs for reliable quantum information storage in 2D systems , 2009, Quantum Cryptography and Computing.

[146]  Michal Horodecki,et al.  On Thermal Stability of Topological Qubit in Kitaev's 4D Model , 2008, Open Syst. Inf. Dyn..

[147]  Zohar Nussinov,et al.  Autocorrelations and thermal fragility of anyonic loops in topologically quantum ordered systems , 2007, 0709.2717.

[148]  James R. Wootton,et al.  Improved HDRG decoders for qudit and non-Abelian quantum error correction , 2014, 1410.4478.

[149]  Xiao-Gang Wen Quantum orders in an exact soluble model. , 2003, Physical review letters.

[150]  D. Loss,et al.  Prospects for Spin-Based Quantum Computing in Quantum Dots , 2012, 1204.5917.

[151]  Channelling study of La1−xSrxCoO3 films on different substrates , 2014, 1403.1439.

[152]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[153]  Edward Witten,et al.  Topological quantum field theory , 1988 .

[154]  C. Castelnovo,et al.  Entanglement and topological entropy of the toric code at finite temperature , 2007, 0704.3616.

[155]  S. Dusuel,et al.  Low-energy effective theory of the toric code model in a parallel magnetic field , 2008, 0807.0487.

[156]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[157]  H. Weinfurter,et al.  Observation of three-photon Greenberger-Horne-Zeilinger entanglement , 1998, quant-ph/9810035.

[158]  D. P. DiVincenzo,et al.  Rigorous Born approximation and beyond for the spin-boson model , 2005 .

[159]  B. Yoshida Violation of the Arrhenius law below the transition temperature , 2014, 1404.0457.

[160]  Jiannis K. Pachos,et al.  Introduction to Topological Quantum Computation , 2012 .

[161]  James R. Wootton Quantum memories and error correction , 2012, 1210.3207.

[162]  Courtney G. Brell A proposal for self-correcting stabilizer quantum memories in 3 dimensions (or slightly less) , 2014, 1411.7046.

[163]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[164]  Sergey Bravyi Universal quantum computation with the v=5/2 fractional quantum Hall state , 2006 .

[165]  Earl T. Campbell,et al.  Fast decoders for qudit topological codes , 2013, 1311.4895.

[166]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[167]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[168]  Einarsson,et al.  Fractional statistics on a torus. , 1990, Physical review letters.

[169]  Helmut G. Katzgraber,et al.  Strong resilience of topological codes to depolarization , 2012, 1202.1852.

[170]  K. B. Whaley,et al.  Relaxation dynamics of the toric code in contact with a thermal reservoir: Finite-size scaling in a low-temperature regime , 2014, 1405.2315.

[171]  James R. Wootton,et al.  Effective quantum-memory Hamiltonian from local two-body interactions , 2014 .

[172]  Meng Cheng,et al.  Symmetry fractionalization, defects, and gauging of topological phases , 2014, Physical Review B.

[173]  Stephen D. Bartlett,et al.  Symmetry protection of measurement-based quantum computation in ground states , 2012, 1207.4805.

[174]  A. Kitaev,et al.  Topological multicritical point in the phase diagram of the toric code model and three-dimensional lattice gauge Higgs model , 2010 .

[175]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[176]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[177]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[178]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[179]  Kai Phillip Schmidt,et al.  Robustness of a perturbed topological phase. , 2010, Physical review letters.

[180]  Robert Alicki,et al.  Quantum Dynamical Semigroups , 2006 .

[181]  Barbara M. Terhal,et al.  Thermodynamic stability criteria for a quantum memory based on stabilizer and subsystem codes , 2009, 0907.2807.

[182]  S. Iblisdir,et al.  Scaling law for topologically ordered systems at finite temperature , 2008, 0806.1853.

[183]  Zohar Nussinov,et al.  A symmetry principle for topological quantum order , 2007, cond-mat/0702377.

[184]  R. Blatt,et al.  Quantum computations on a topologically encoded qubit , 2014, Science.

[185]  H. Bombin,et al.  Topological subsystem codes , 2009, 0908.4246.

[186]  Paolo Zanardi,et al.  String and membrane condensation on three-dimensional lattices , 2005 .

[187]  Claudio Castelnovo,et al.  Topological order in a three-dimensional toric code at finite temperature , 2008, 0804.3591.

[188]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[189]  F. Mila,et al.  Quantum compass model on the square lattice , 2005, cond-mat/0501708.

[190]  John Preskill,et al.  Topological entanglement entropy. , 2005, Physical Review Letters.

[191]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[192]  H. Bombin,et al.  Exact topological quantum order in D=3 and beyond : Branyons and brane-net condensates , 2006, cond-mat/0607736.

[193]  Quantum Self-Correcting Stabilizer Codes , 2008, 0810.3557.

[194]  M. Fannes,et al.  A statistical mechanics view on Kitaev's proposal for quantum memories , 2007, quant-ph/0702102.

[195]  Artur Ekert,et al.  Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[196]  E. Davies,et al.  Markovian master equations , 1974 .

[197]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[198]  Fernando Pastawski,et al.  Fault-tolerant logical gates in quantum error-correcting codes , 2014, 1408.1720.

[199]  J. Lebowitz,et al.  Improved Peierls Argument for High-Dimensional Ising Models , 1998, cond-mat/9809158.

[200]  Maarten Van den Nest,et al.  A non-commuting stabilizer formalism , 2014, 1404.5327.

[201]  Benjamin J. Brown,et al.  Fault-tolerant error correction with the gauge color code , 2015, Nature Communications.

[202]  Benjamin J. Brown,et al.  Entropic barriers for two-dimensional quantum memories. , 2013, Physical review letters.

[203]  James R. Wootton,et al.  Error thresholds for Abelian quantum double models: Increasing the bit-flip stability of topological quantum memory , 2014, 1406.5974.

[204]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[205]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[206]  James R. Wootton,et al.  Self-correcting quantum memory with a boundary , 2012, 1206.0991.

[207]  Jiannis K. Pachos,et al.  Engineering complex topological memories from simple Abelian models , 2009, 0908.0708.

[208]  Isaac L. Chuang,et al.  Framework for classifying logical operators in stabilizer codes , 2010, 1002.0085.

[209]  David Poulin,et al.  Unified and generalized approach to quantum error correction. , 2004, Physical review letters.

[210]  K. Brown,et al.  Topological subsystem codes from graphs and hypergraphs , 2012, 1207.0479.

[211]  Matthew B. Hastings,et al.  Homological product codes , 2013, STOC.

[212]  James R. Wootton,et al.  Incoherent dynamics in the toric code subject to disorder , 2011, 1112.1613.

[213]  J. Harrington,et al.  Analysis of quantum error-correcting codes: symplectic lattice codes and toric codes , 2004 .

[214]  S. Bravyi,et al.  Energy landscape of 3D spin Hamiltonians with topological order. , 2011, Physical review letters.

[215]  Barbara M. Terhal,et al.  Fault-tolerant quantum computation for local non-Markovian noise , 2005 .

[216]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[217]  Generalization of the Peierls-Griffiths theorem for the Ising model on graphs. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[218]  Frank Wilczek,et al.  Quantum Mechanics of Fractional-Spin Particles , 1982 .

[219]  Karthik Siva,et al.  Topological order and memory time in marginally-self-correcting quantum memory , 2016, 1603.07805.

[220]  Beni Yoshida,et al.  Exotic topological order in fractal spin liquids , 2013, 1302.6248.

[221]  J. Preskill,et al.  Confinement Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory , 2002, quant-ph/0207088.

[222]  Jiannis K. Pachos,et al.  Lifetime of topological quantum memories in thermal environment , 2012, 1209.2940.

[223]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[224]  Beni Yoshida,et al.  Feasibility of self-correcting quantum memory and thermal stability of topological order , 2011, 1103.1885.

[225]  Steven T. Flammia,et al.  Classical Simulation of Quantum Error Correction in a Fibonacci Anyon Code , 2015, 1506.03815.

[226]  A. Kay Nonequilibrium reliability of quantum memories. , 2008, Physical review letters.

[227]  Z. Nussinov,et al.  Compass and Kitaev models -- Theory and Physical Motivations , 2013, 1303.5922.

[228]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[229]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[230]  Daniel Loss,et al.  Quantum memory coupled to cavity modes , 2010, 1011.3762.

[231]  A. Hamma,et al.  Topological order, entanglement, and quantum memory at finite temperature , 2011, 1112.0947.

[232]  Daniel Loss,et al.  Breakdown of surface-code error correction due to coupling to a bosonic bath , 2014, 1402.3108.