Improving scenario discovery for handling heterogeneous uncertainties and multinomial classified outcomes

Scenario discovery is a novel model-based approach to scenario development in the presence of deep uncertainty. Scenario discovery frequently relies on the Patient Rule Induction Method (PRIM). PRIM identifies regions in the model input space that are highly predictive of producing model outcomes that are of interest. To identify these, PRIM uses a lenient hill climbing optimization procedure. PRIM struggles when confronted with cases where the uncertain factors are a mix of data types, and can be used only for binary classifications. We compare two more lenient objective functions which both address the first problem, and an alternative objective function using Gini impurity which addresses the second problem. We assess the efficacy of the modification using previously published cases. Both modifications are effective. The more lenient objective functions produce better descriptions of the data, while the Gini impurity objective function allows PRIM to be used when handling multinomial classified data. We compare three objective functions for PRIM in case of binary classified data.The more lenient objective functions outperform the less lenient objective functions.We introduce a new objective function for PRIM in case of multinomial classified data.We compare PRIM with the multinomial objective function to both CART, and sequential use of PRIM on each class separately.

[1]  Zhu Yi-fan Exploratory Modeling and Analysis for Armada Area Defence , 2011 .

[2]  J. Forrester Industrial Dynamics , 1997 .

[3]  Marjolein B.A. van Asselt,et al.  Practising the scenario-axes technique , 2006 .

[4]  Warren E. Walker,et al.  Adapt or Perish: A Review of Planning Approaches for Adaptation under Deep Uncertainty , 2013 .

[5]  John D. Sterman,et al.  System Dynamics: Systems Thinking and Modeling for a Complex World , 2002 .

[6]  Jan H. Kwakkel,et al.  Using System Dynamics for Grand Challenges: The ESDMA Approach , 2015 .

[7]  Mark E. Borsuk,et al.  Discovering plausible energy and economic futures under global change using multidimensional scenario discovery , 2013, Environ. Model. Softw..

[8]  Céline Guivarch,et al.  The diversity of socio-economic pathways and CO2 emissions scenarios: Insights from the investigation of a scenarios database , 2016, Environ. Model. Softw..

[9]  Céline Guivarch,et al.  Building SSPs for Climate Policy Analysis , 2013 .

[10]  James Derbyshire,et al.  Preparing for the future : development of an 'antifragile' methodology that complements scenario planning by omitting causation , 2014 .

[11]  James M. Griffin,et al.  Impacts on U.S. Energy Expenditures of Increasing Renewable Energy Use , 2006 .

[12]  Nicholas I. Fisher,et al.  Bump hunting in high-dimensional data , 1999, Stat. Comput..

[13]  Vincent Gitz,et al.  IMACLIM-R: a modelling framework to simulate sustainable development pathways , 2010 .

[14]  M. V. Asselt,et al.  The future shocks: On discontinuity and scenario development , 2005 .

[15]  Robert J. Lempert,et al.  Comparing Algorithms for Scenario Discovery , 2008 .

[16]  Jan H. Kwakkel,et al.  An exploratory approach for adaptive policymaking by using multi-objective robust optimization , 2014, Simul. Model. Pract. Theory.

[17]  Jan H. Kwakkel,et al.  Dynamic scenario discovery under deep uncertainty: The future of copper , 2013 .

[18]  Bing Han,et al.  Improving scenario discovery using orthogonal rotations , 2013, Environ. Model. Softw..

[19]  Myles T. Collins,et al.  Managing the Risk of Uncertain Threshold Responses: Comparison of Robust, Optimum, and Precautionary Approaches , 2007, Risk analysis : an official publication of the Society for Risk Analysis.

[20]  Benjamin P. Bryant,et al.  Thinking Inside the Box , 2010 .

[21]  Myles T. Collins,et al.  Managing the Risk of Uncertain Threshold Responses , 2007 .

[22]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[23]  Céline Guivarch,et al.  Building SSPs for climate policy analysis: a scenario elicitation methodology to map the space of possible future challenges to mitigation and adaptation , 2012, Climatic Change.

[24]  John D. Sterman,et al.  Business dynamics : systems thinking and modelling for acomplex world , 2002 .

[25]  Jan H. Kwakkel,et al.  Adaptive Robust Design under deep uncertainty , 2013 .

[26]  David G. Groves,et al.  A General, Analytic Method for Generating Robust Strategies and Narrative Scenarios , 2006, Manag. Sci..

[27]  Patrick M. Reed,et al.  An open source framework for many-objective robust decision making , 2015, Environ. Model. Softw..