Standardized methods for the production of high specific-activity zirconium-89.

[1]  T. Nayak,et al.  Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges. , 2009, Bioconjugate chemistry.

[2]  H. Moriyama,et al.  Zirconium Solubility in Ternary Aqueous System of Zr(IV)-OH-Carboxylates , 2009 .

[3]  Anna M. Wu,et al.  Antibodies and Antimatter: The Resurgence of Immuno-PET , 2008, Journal of Nuclear Medicine.

[4]  P. Lambin,et al.  Disparity Between In Vivo EGFR Expression and 89Zr-Labeled Cetuximab Uptake Assessed with PET , 2008, Journal of Nuclear Medicine.

[5]  M. Pomper,et al.  Long-Lived and Unconventional PET Radionuclides , 2008 .

[6]  H. Moriyama,et al.  Hydrolysis Constant and Coordination Geometry of Zirconium(IV) , 2008 .

[7]  Pat Zanzonico,et al.  Routine Quality Control of Clinical Nuclear Medicine Instrumentation: A Brief Review* , 2008, Journal of Nuclear Medicine.

[8]  G. Giaccone,et al.  Quantitative PET imaging of Met-expressing human cancer xenografts with 89Zr-labelled monoclonal antibody DN30 , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[9]  P. Jurek,et al.  Facile radiolabeling of monoclonal antibodies and other proteins with zirconium-89 or gallium-68 for PET imaging using p-isothiocyanatobenzyl-desferrioxamine , 2008 .

[10]  R. Schibli,et al.  Production and separation of ''non-standard'' PET nuclides at a large cyclotron facility: the experiences at the Paul Scherrer Institute in Switzerland. , 2008, The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of....

[11]  G. V. van Dongen,et al.  Immuno-PET: a navigator in monoclonal antibody development and applications. , 2007, The oncologist.

[12]  M. Brechbiel,et al.  Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. , 2007, Nuclear medicine and biology.

[13]  J. S. Lee,et al.  Performance Measurement of the microPET Focus 120 Scanner , 2007, Journal of Nuclear Medicine.

[14]  H. Hollema,et al.  In Vivo VEGF Imaging with Radiolabeled Bevacizumab in a Human Ovarian Tumor Xenograft , 2007, Journal of Nuclear Medicine.

[15]  H. Coenen,et al.  A comparative study on the separation of radiozirconium via ion-exchange and solvent extraction techniques, with particular reference to the production of 88Zr and 89Zr in proton induced reactions on yttrium , 2007 .

[16]  H. Moriyama,et al.  Solubility of Zirconium(IV) Hydrous Oxides , 2007 .

[17]  O. Visser,et al.  Preparation and evaluation of 89Zr-Zevalin for monitoring of 90Y-Zevalin biodistribution with positron emission tomography , 2006, European Journal of Nuclear Medicine and Molecular Imaging.

[18]  S. Larson,et al.  Tumor-specific in vivo transfection with HSV-1 thymidine kinase gene using a Sindbis viral vector as a basis for prodrug ganciclovir activation and PET. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[19]  R. Boellaard,et al.  Performance of Immuno–Positron Emission Tomography with Zirconium-89-Labeled Chimeric Monoclonal Antibody U36 in the Detection of Lymph Node Metastases in Head and Neck Cancer Patients , 2006, Clinical Cancer Research.

[20]  Jason S. Lewis,et al.  Preparation of high specific activity (86)Y using a small biomedical cyclotron. , 2005, Nuclear medicine and biology.

[21]  C. R. Leemans,et al.  (89)Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals (90)Y and (177)Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[22]  G. V. van Dongen,et al.  The promise of immuno-PET in radioimmunotherapy. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[23]  R. Boellaard,et al.  High-quality 124I-labelled monoclonal antibodies for use as PET scouting agents prior to 131I-radioimmunotherapy , 2004, European Journal of Nuclear Medicine and Molecular Imaging.

[24]  W. Oyen,et al.  PET radioimmunoscintigraphy of renal cell cancer using 89Zr-labeled cG250 monoclonal antibody in nude rats. , 2004, Cancer biotherapy & radiopharmaceuticals.

[25]  R. Boellaard,et al.  Quantitative 89Zr immuno-PET for in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice. , 2003, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[26]  R. Boellaard,et al.  89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. , 2003, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[27]  R. Boellaard,et al.  Long-lived positron emitters zirconium-89 and iodine-124 for scouting of therapeutic radioimmunoconjugates with PET. , 2003, Cancer biotherapy & radiopharmaceuticals.

[28]  N. R. Das,et al.  Simultaneous production of 89Zr and 90,91m,92mNb in α-particle activated yttrium and their subsequent separation by HDEHP , 1997 .

[29]  H. Haisma,et al.  Zirconium-labeled monoclonal antibodies and their distribution in tumor-bearing nude mice. , 1997, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[30]  M J Welch,et al.  Efficient production of high specific activity 64Cu using a biomedical cyclotron. , 1997, Nuclear medicine and biology.

[31]  H. Haisma,et al.  A facile method for the labeling of proteins with zirconium isotopes. , 1996, Nuclear medicine and biology.

[32]  F. Langevelde,et al.  Production of highly pure no-carrier added 89Zr for the labelling of antibodies with a positron emitter , 1994 .

[33]  H. Haisma,et al.  Evaluation of desferal as a bifunctional chelating agent for labeling antibodies with Zr-89. , 1992, International journal of radiation applications and instrumentation. Part A, Applied radiation and isotopes.

[34]  S. Downey,et al.  Production of no-carrier-added zirconium-89 for positron emission tomography , 1991 .

[35]  O. DeJesus,et al.  Production and purification of 89Zr, a potential PET antibody label , 1990 .

[36]  G. V. Kudryavtsev,et al.  Preparation, properties and analytical application of silica with chemically grafted hydroxamic acid groups , 1989 .

[37]  West,et al.  Measurements and a direct-reaction-plus-Hauser-Feshbach analysis of 89Y(p,n)89Zr, 89Y(p,2n)88, and 89Y(p,pn)88Y reactions up to 40 MeV. , 1988, Physical review. C, Nuclear physics.

[38]  Petr Zuman,et al.  Standard potentials in aqueous solutions , 1986 .

[39]  J. Herscheid,et al.  Manganese-52m for direct application: a new 52Fe/52mMn generator based on a hydroxamate resin. , 1983, The International journal of applied radiation and isotopes.

[40]  P. Hinrichsen Decay of 78.4 h 89Zr , 1968 .

[41]  G. Mitchell,et al.  The Y89(p, n) Zr89 reaction , 1965 .

[42]  J. Mealey Application of positron-emitting zirconium-89 for potential use in brain tumor localization. , 1958, Surgical forum.

[43]  J. Mealey Turn-over of Carrier-free Zirconium-89 in Man , 1957, Nature.