PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy

In addition to recruiting Parkin/autophagy receptors to damaged mitochondria, the authors show that PINK1 triggers PKA displacement from AKAP1 after damage to trigger mitochondrial fission in a Parkin-independent manner, suggesting that PINK1 is a master mitophagy regulator.

[1]  A. Feuchtinger,et al.  Calcineurin Links Mitochondrial Elongation with Energy Metabolism. , 2015, Cell metabolism.

[2]  J. Corvol,et al.  Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1 , 2015, The EMBO journal.

[3]  J. Burman,et al.  The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy , 2015, Nature.

[4]  D. Komander,et al.  Mechanism of phospho-ubiquitin induced PARKIN activation , 2015, Nature.

[5]  T. Schwarz,et al.  Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin , 2014, The Journal of cell biology.

[6]  E. Bézard,et al.  Slowing of neurodegeneration in Parkinson's disease and Huntington's disease: future therapeutic perspectives , 2014, The Lancet.

[7]  D. Kirkpatrick,et al.  The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy , 2014, Nature.

[8]  T. Hirokawa,et al.  Ubiquitin is phosphorylated by PINK1 to activate parkin , 2014, Nature.

[9]  Soojay Banerjee,et al.  PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity , 2014, The Journal of cell biology.

[10]  C. Chu,et al.  Beyond the mitochondrion: cytosolic PINK1 remodels dendrites through Protein Kinase A , 2014, Journal of neurochemistry.

[11]  Scott E. Martin,et al.  High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy , 2013, Nature.

[12]  T. Gonen,et al.  Intrinsic disorder within an AKAP-protein kinase A complex guides local substrate phosphorylation , 2013, eLife.

[13]  R. Youle,et al.  The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria , 2013, Autophagy.

[14]  S. Strack,et al.  Reversible phosphorylation of Drp 1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death , 2013 .

[15]  Nobutaka Hattori,et al.  PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy , 2012, Scientific Reports.

[16]  Miratul M. K. Muqit,et al.  PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65 , 2012, Open Biology.

[17]  R. Youle,et al.  Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. , 2012, Developmental cell.

[18]  C. Chu,et al.  Mitochondrially localized PKA reverses mitochondrial pathology and dysfunction in a cellular model of Parkinson's disease , 2011, Cell Death and Differentiation.

[19]  D. Bowtell,et al.  Fine-tuning of Drp1/Fis1 availability by AKAP121/Siah2 regulates mitochondrial adaptation to hypoxia. , 2011, Molecular cell.

[20]  S. Strack,et al.  PKA/AKAP1 and PP2A/Bβ2 Regulate Neuronal Morphogenesis via Drp1 Phosphorylation and Mitochondrial Bioenergetics , 2011, The Journal of Neuroscience.

[21]  E. Schon,et al.  Mitochondria: The Next (Neurode)Generation , 2011, Neuron.

[22]  S. Green,et al.  Mechanism of Neuroprotective Mitochondrial Remodeling by PKA/AKAP1 , 2011, PLoS biology.

[23]  R. Youle,et al.  Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin , 2010, The Journal of cell biology.

[24]  N. Hattori,et al.  PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy , 2010, The Journal of cell biology.

[25]  Atsushi Tanaka,et al.  PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin , 2010, PLoS biology.

[26]  Ted M. Dawson,et al.  PINK1-dependent recruitment of Parkin to mitochondria in mitophagy , 2009, Proceedings of the National Academy of Sciences.

[27]  Werner J H Koopman,et al.  Computer-assisted live cell analysis of mitochondrial membrane potential, morphology and calcium handling. , 2008, Methods.

[28]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[29]  P. Bernardi,et al.  Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria , 2008, Proceedings of the National Academy of Sciences.

[30]  D. Viggiano,et al.  Proteolysis of AKAP121 regulates mitochondrial activity during cellular hypoxia and brain ischaemia , 2008, The EMBO journal.

[31]  A. Schapira Mitochondria in the aetiology and pathogenesis of Parkinson's disease , 2008, The Lancet Neurology.

[32]  Min Wu,et al.  Fission and selective fusion govern mitochondrial segregation and elimination by autophagy , 2008, The EMBO journal.

[33]  S. Strack,et al.  Reversible phosphorylation of Drp1 by cyclic AMP‐dependent protein kinase and calcineurin regulates mitochondrial fission and cell death , 2007, EMBO reports.

[34]  C. Blackstone,et al.  Cyclic AMP-dependent Protein Kinase Phosphorylation of Drp1 Regulates Its GTPase Activity and Mitochondrial Morphology* , 2007, Journal of Biological Chemistry.

[35]  Kimberly C. Smith,et al.  Dynamic Anchoring of PKA Is Essential during Oocyte Maturation , 2006, Current Biology.

[36]  J. Troncoso,et al.  S-Nitrosylation of Parkin Regulates Ubiquitination and Compromises Parkin's Protective Function , 2004, Science.