Optimal resource allocation in activity networks - stochastic environment

We treat the problem of optimally allocating a single resource under uncertainty to minimise the sum of resource cost and tardiness cost. We assume that the work content of an activity is the source of the 'internal' uncertainty - as opposed to the 'external' uncertainty. When the work content is known only in probability, we discuss the approach via stochastic programming and demonstrate its inadequacy. We treat the special case when the work content is exponentially distributed. This results in a continuous-time Markov chain with a single absorbing state. We establish convexity of the cost function and develop a policy iteration-like approach that achieves the optimum in finite number of steps. In case of arbitrary probability distribution of the work content, we develop a simulation-based optimisation method that incorporates sampling optimisation and variance reduction techniques.

[1]  S E Elmaghraby,et al.  Resource Allocation in Activity Networks under Stochastic Conditions. A Geometric Programming-Sample Path Optimization Approach , 2007 .

[2]  Erik Demeulemeester,et al.  Project scheduling : a research handbook , 2002 .

[3]  Salah E. Elmaghraby,et al.  Basic approximations to an adaptive resource allocation technique to stochastic multimodal projects , 2003 .

[4]  Christine Strauss,et al.  A Stochastic Branch-and-Bound Approach to Activity Crashing in Project Management , 2000, INFORMS J. Comput..

[5]  James J. Solberg,et al.  The use of cutsets in Monte Carlo analysis of stochastic networks , 1979 .

[6]  R. Wollmer Critical path planning under uncertainty , 1985 .

[7]  James R. Wilson,et al.  Integrated Variance Reduction Strategies for Simulation , 1996, Oper. Res..

[8]  Richard E. Barlow,et al.  Statistical Theory of Reliability and Life Testing: Probability Models , 1976 .

[9]  Bernard M. Levin,et al.  Statistical theory of reliability , 1963 .

[10]  Willy Herroelen,et al.  Project scheduling under uncertainty: Survey and research potentials , 2005, Eur. J. Oper. Res..

[11]  Jerzy Kamburowski,et al.  Optimal Reductions of Two-Terminal Directed Acyclic Graphs , 1992, SIAM J. Comput..

[12]  Salah E. Elmaghraby,et al.  Adaptive resource allocation in multimodal activity networks , 2004 .

[13]  Robert L. Armacost,et al.  The role of the nonanticipativity constraint in commercial software for stochastic project scheduling , 1996 .

[14]  E. Lehmann Some Concepts of Dependence , 1966 .

[15]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[16]  Frederik Stork,et al.  Stochastic resource-constrained project scheduling , 2001 .

[17]  Amir Azaron,et al.  Time-cost trade-off via optimal control theory in Markov PERT networks , 2007, Ann. Oper. Res..

[18]  Sacramento Quintanilla,et al.  Project Scheduling with Stochastic Activity Interruptions , 1999 .

[19]  Vidyadhar G. Kulkarni,et al.  Markov and Markov-Regenerative pert Networks , 1986, Oper. Res..

[20]  Marcel F. Neuts,et al.  Structured Stochastic Matrices of M/G/1 Type and Their Applications , 1989 .

[21]  Shu-Cherng Fang,et al.  An Electromagnetism-like Mechanism for Global Optimization , 2003, J. Glob. Optim..

[22]  Eugene L. Lawler,et al.  The Recognition of Series Parallel Digraphs , 1982, SIAM J. Comput..

[23]  Dimitri Golenko-Ginzburg,et al.  Stochastic network project scheduling with non-consumable limited resources , 1997 .

[24]  Salah E. Elmaghraby,et al.  The optimal resource allocation in stochastic activity networks via the electromagnetism approach , 2004 .