Superconducting nano-mechanical diamond resonators

In this work we present the fabrication and characterization of superconducting nano-mechanical resonators made from nanocrystalline boron doped diamond (BDD). The oscillators can be driven and read out in their superconducting state and show quality factors as high as 40,000 at a resonance frequency of around 10 MHz. Mechanical damping is studied for magnetic fields up to 3 T where the resonators still show superconducting properties. Due to their simple fabrication procedure, the devices can easily be coupled to other superconducting circuits and their performance is comparable with state-of-the-art technology.

[1]  Dong Liu,et al.  Ultrasensitive force detection with a nanotube mechanical resonator. , 2013, Nature nanotechnology.

[2]  G. Steele,et al.  Strong Coupling Between Single-Electron Tunneling and Nanomechanical Motion , 2009, Science.

[3]  P. Ovartchaiyapong,et al.  High quality factor single-crystal diamond mechanical resonators , 2012 .

[4]  K. Jensen,et al.  An atomic-resolution nanomechanical mass sensor. , 2008, Nature Nanotechnology.

[6]  Tuncay Alan,et al.  Particle manipulation using an ultrasonic micro-gripper , 2012 .

[7]  Matthias Imboden,et al.  High quality factor gigahertz frequencies in nanomechanical diamond resonators , 2007, 0710.2613.

[8]  O. Williams,et al.  Nonlinear dissipation in diamond nanoelectromechanical resonators , 2013 .

[9]  A. Endo,et al.  Microwave-induced excess quasiparticles in superconducting resonators measured through correlated conductivity fluctuations , 2012, 1202.0816.

[10]  R. E. Sah,et al.  Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films , 2013, Nanotechnology.

[11]  F. Omnès,et al.  The diamond superconducting quantum interference device. , 2011, ACS nano.

[12]  J. B. Hertzberg,et al.  Preparation and detection of a mechanical resonator near the ground state of motion , 2009, Nature.

[13]  O. Williams,et al.  Chemical mechanical polishing of thin film diamond , 2013, 1308.1239.

[14]  P. M. Echternach,et al.  Nanomechanical measurements of a superconducting qubit , 2009, Nature.

[15]  M. Blencowe,et al.  Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box. , 2002, Physical review letters.

[16]  C. Strunk,et al.  Magnetic damping of a carbon nanotube nano-electromechanical resonator , 2012, 1203.2319.

[17]  M. Roukes,et al.  Zeptogram-scale nanomechanical mass sensing. , 2005, Nano letters.

[18]  K. R. Williams,et al.  Etch rates for micromachining processing-Part II , 2003 .

[19]  M. Ventra,et al.  Reading, writing, and squeezing the entangled states of two nanomechanical resonators coupled to a SQUID , 2012, 1211.1072.

[20]  J. Eisert,et al.  Entanglement of nanoelectromechanical oscillators by Cooper-pair tunneling , 2012, 1210.0665.

[21]  M. Roukes,et al.  Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals , 1996 .

[22]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[23]  M. Aspelmeyer,et al.  Squeezed light from a silicon micromechanical resonator , 2013, Nature.

[24]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[25]  Andrew Cleland,et al.  External control of dissipation in a nanometer-scale radiofrequency mechanical resonator , 1999 .

[26]  A. Cleland Foundations of nanomechanics , 2002 .

[27]  F. Omnès,et al.  Nanostructures made from superconducting boron-doped diamond , 2010, Nanotechnology.

[28]  V. Sidorov,et al.  Superconductivity in diamond , 2004, Nature.

[29]  Liwei Lin,et al.  Microcrystalline diamond micromechanical resonators with quality factor limited by thermoelastic damping , 2013 .

[30]  O. Williams,et al.  High Young's modulus in ultra thin nanocrystalline diamond , 2010 .

[31]  C. Nguyen,et al.  1.51-GHz nanocrystalline diamond micromechanical disk resonator with material-mismatched isolating support , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[32]  M. Blencowe Nanoelectromechanical systems , 2005, cond-mat/0502566.

[33]  Matthias Imboden,et al.  Observation of nonlinear dissipation in piezoresistive diamond nanomechanical resonators by heterodyne down-mixing. , 2013, Nano letters.

[34]  J. Teufel,et al.  Measuring nanomechanical motion with a microwave cavity interferometer , 2008, 0801.1827.

[35]  A. B. Manukin,et al.  Measurement of Weak Forces in Physics Experiments , 1977 .

[36]  Jari Kinaret,et al.  Coupling Mechanics to Charge Transport in Carbon Nanotube Mechanical Resonators , 2009, Science.

[37]  O. Williams,et al.  Nanocrystalline diamond , 2011 .

[38]  E. Weig,et al.  Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature , 2011, Nature Communications.

[39]  J. Teufel,et al.  Circuit cavity electromechanics in the strong-coupling regime , 2010, Nature.

[40]  M. D. LaHaye,et al.  Cooling a nanomechanical resonator with quantum back-action , 2006, Nature.

[41]  M. Roukes,et al.  Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator. , 2010, Nano letters.

[42]  J. Kofler,et al.  Metallic coatings of microelectromechanical structures at low temperatures: Stress, elasticity, and nonlinear dissipation , 2010 .

[43]  Detailed study of superconductivity in nanostructured nanocrystalline boron doped diamond thin films , 2010 .

[44]  J. Chaste,et al.  A nanomechanical mass sensor with yoctogram resolution. , 2012, Nature nanotechnology.

[45]  M. Roukes,et al.  VHF, UHF and microwave frequency nanomechanical resonators , 2005 .