Measurement and modeling of an ultra-wide bandwidth indoor channel

This paper describes the results of frequency-domain channel sounding in residential environments. It consists of detailed characterization of complex frequency responses of ultra-wideband (UWB) signals having a nominal center frequency of 5 GHz. A path loss model as well as a second-order autoregressive model is proposed for frequency response generation of the UWB indoor channel. Probability distributions of the model parameters for different locations are presented. Also, time-domain results such as root mean square delay spread and percent of captured power are presented.

[1]  Samy A. Mahmoud,et al.  A comparison of indoor radio propagation characteristics at 910 MHz and 1.75 GHz , 1989, IEEE J. Sel. Areas Commun..

[2]  Moe Z. Win,et al.  Impulse radio: how it works , 1998, IEEE Communications Letters.

[3]  Moe Z. Win,et al.  Ultra-wide bandwidth signal propagation for indoor wireless communications , 1997, Proceedings of ICC'97 - International Conference on Communications.

[4]  Theodore S. Rappaport,et al.  Propagation measurements and models for wireless communications channels , 1995, IEEE Commun. Mag..

[5]  K. Pahlavan,et al.  Measurement and analysis of the indoor radio channel in the frequency domain , 1990 .

[6]  Saeed S. Ghassemzadeh,et al.  On the statistics of multipath fading using a direct sequence CDMA signal at 2 GHz, in microcellular and indoor environment , 1994, Int. J. Wirel. Inf. Networks.

[7]  K. Siwiak,et al.  Ultra-wide band radio: the emergence of an important new technology , 2001, IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202).

[8]  Saeed S. Ghassemzadeh,et al.  An Ultra Wide Bandwidth System for In-Home Wireless Networking , 2001 .

[9]  Kaveh Pahlavan,et al.  Wideband radio propagation modeling for indoor geolocation applications , 1998 .

[10]  K. Siwiak,et al.  A path link model for ultra wide band pulse transmissions , 2001, IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202).

[11]  Moe Z. Win,et al.  Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications , 2000, IEEE Trans. Commun..

[12]  Larry J. Greenstein,et al.  An empirically based path loss model for wireless channels in suburban environments , 1999, IEEE J. Sel. Areas Commun..

[13]  Simon Haykin,et al.  Adaptive filter theory (2nd ed.) , 1991 .

[14]  W. C. Jakes,et al.  Microwave Mobile Communications , 1974 .

[15]  Theodore S. Rappaport,et al.  Statistical channel impulse response models for factory and open plan building radio communicate system design , 1991, IEEE Trans. Commun..

[16]  Moe Z. Win,et al.  Time-hopping SSMA techniques for impulse radio with an analog modulated data subcarrier , 1996, Proceedings of ISSSTA'95 International Symposium on Spread Spectrum Techniques and Applications.

[17]  Kaveh Pahlavan,et al.  Wireless Information Networks , 1995 .

[18]  H. Hashemi,et al.  The indoor radio propagation channel , 1993, Proc. IEEE.

[19]  Karsten P. Ulland,et al.  Vii. References , 2022 .

[20]  Moe Z. Win,et al.  A statistical model for the UWB indoor channel , 2001, IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202).

[21]  Kaveh Pahlavan,et al.  Autoregressive modeling of wide-band indoor radio propagation , 1992, IEEE Trans. Commun..

[22]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[23]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .