Measuring entertainment and automatic generation of entertaining games

Over the period of time computer games have became a major source of entertainment for humans. From the point of view of game developers there is a constant demand of writing games which are entertaining for the end users but entertainment itself is of subjective nature. It has always been difficult to quantify the entertainment value of the human player. The two factors which mainly influence the entertainment value are the type of the game and the contents of the game. In this paper we address the issues of measuring entertainment and automatic generation of computer games. We present some quantitative measures for entertainment in a genre of computer game and apply them as a guide for the evolution of new interesting games.

[1]  Hiroyuki Iida,et al.  OUTCOME UNCERTAINTY AND INTERESTEDNESS IN GAME-PLAYING: A CASE STUDY USING SYNCHRONIZED HEX , 2006 .

[2]  Risto Miikkulainen,et al.  Neuroevolution for adaptive teams , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[3]  M Rauterberg,et al.  AMME: an Automatic Mental Model Evaluation to analyse user behaviour traced in a finite, discrete state space. , 1993, Ergonomics.

[4]  D. Kudenko,et al.  A User Model for the Generation of Dilemma-based Interactive Narratives , 2007 .

[5]  Jennica Falk Tangible Mudding : Interfacing Computer Games with the Real World , 2006 .

[6]  Hiroyuki Iida,et al.  A metric for entertainment of boardgames: its implication for evolution of chess variants , 2002, IWEC.

[7]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[8]  David B. Fogel,et al.  Evolving an expert checkers playing program without using human expertise , 2001, IEEE Trans. Evol. Comput..

[9]  Jonathan Schaeffer,et al.  One jump ahead - challenging human supremacy in checkers , 1997, J. Int. Comput. Games Assoc..

[10]  Joseph A. Paradiso,et al.  Z-Tiles: building blocks for modular, pressure-sensing floorspaces , 2004, CHI EA '04.

[11]  Alexander Nareyek,et al.  Intelligent Agents for Computer Games , 2006 .

[12]  Gregory D. Abowd,et al.  The smart floor: a mechanism for natural user identification and tracking , 2000, CHI Extended Abstracts.

[13]  Georgios N. Yannakakis,et al.  Entertainment capture through heart rate activity in physical interactive playgrounds , 2008, User Modeling and User-Adapted Interaction.

[14]  Risto Miikkulainen,et al.  Exploiting Sensor Symmetries in Example-based Training for Intelligent Agents , 2006, 2006 IEEE Symposium on Computational Intelligence and Games.

[15]  Julian Togelius,et al.  Optimization of Platform Game Levels for Player Experience , 2009, AIIDE.

[16]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[17]  Jonathan Schaeffer One Jump Ahead , 1997 .

[18]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[19]  Gerard O'Regan,et al.  A Brief History of Computing , 2012, Springer London.

[20]  A. Ram,et al.  Player Modeling Evaluation for Interactive Fiction , 2007 .

[21]  Georgios N. Yannakakis,et al.  Modeling and Augmenting Game Entertainment through Challenge and Curiosity , 2007, Int. J. Artif. Intell. Tools.

[22]  N. Lazzaro Why we Play Games: Four Keys to More Emotion without Story , 2004 .

[23]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[24]  D. Gentile,et al.  The Effects of Violent Video Game Habits on Adolescent Aggressive Attitudes and Behaviors. , 2001 .

[25]  Georgios N. Yannakakis,et al.  Real-Time Game Adaptation for Optimizing Player Satisfaction , 2009, IEEE Transactions on Computational Intelligence and AI in Games.

[26]  Pedro Antonio Gonzlez-Calero,et al.  Artificial Intelligence for Computer Games , 2011, CGAMES 2011.

[27]  S.M. Lucas,et al.  Evolutionary computation and games , 2006, IEEE Computational Intelligence Magazine.

[28]  Jürgen Schmidhuber,et al.  Optimal Artificial Curiosity, Creativity, Music, and the Fine Arts , 2005 .

[29]  Patricia M. Greenfield,et al.  Effect of video game practice on spatial skills in girls and boys , 1994 .

[30]  Risto Miikkulainen,et al.  Neuroevolution of an automobile crash warning system , 2005, GECCO '05.

[31]  Germund Hesslow,et al.  EXPLORING INTERNAL SIMULATION OF PERCEPTION IN MOBILE ROBOTS , 2001 .

[32]  David Thue,et al.  Interactive Storytelling: A Player Modelling Approach , 2007, AIIDE.

[33]  Marcus Gallagher,et al.  Learning to play Pac-Man: an evolutionary, rule-based approach , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[34]  Risto Miikkulainen,et al.  Evolving Stochastic Controller Networks for Intelligent Game Agents , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[35]  Liz Sonenberg,et al.  An Approach to Evaluating Human Characteristics in Agents , 2003 .

[36]  Nicola Beume,et al.  Intelligent anti-grouping in real-time strategy games , 2008, 2008 IEEE Symposium On Computational Intelligence and Games.

[37]  Melissa A. Federoff,et al.  HEURISTICS AND USABILITY GUIDELINES FOR THE CREATION AND EVALUATION OF FUN IN VIDEO GAMES , 2002 .

[38]  Zbigniew Michalewicz,et al.  An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms , 1991, ICGA.

[39]  John R. Anderson,et al.  Why do children learn to say “Broke”? A model of learning the past tense without feedback , 2002, Cognition.

[40]  Matthias Rauterberg,et al.  About a framework for information and information processing of learning systems , 1995, ISCO.

[41]  Georgios N. Yannakakis,et al.  A Generic Approach for Obtaining Higher Entertainment in Predator/Prey Computer Games , 2005 .

[42]  Nicolas Esposito,et al.  A Short and Simple Definition of What a Videogame Is , 2005, DiGRA Conference.

[43]  KhooAaron,et al.  Applying Inexpensive AI Techniques to Computer Games , 2002 .

[44]  M. Csíkszentmihályi Flow: The Psychology of Optimal Experience , 1990 .

[45]  Peter J. Angeline,et al.  An evolutionary algorithm that constructs recurrent neural networks , 1994, IEEE Trans. Neural Networks.

[46]  Thomas W. Malone,et al.  What makes things fun to learn? heuristics for designing instructional computer games , 1980, SIGSMALL '80.

[47]  William V. Wright,et al.  A Theory of Fun for Game Design , 2004 .

[48]  Julian Togelius,et al.  Super mario evolution , 2009, 2009 IEEE Symposium on Computational Intelligence and Games.

[49]  Nilanjan Sarkar,et al.  Maintaining Optimal Challenge in Computer Games through Real-Time Physiological Feedback , 2005 .

[50]  Julian Togelius,et al.  An experiment in automatic game design , 2008, 2008 IEEE Symposium On Computational Intelligence and Games.

[51]  Julian Togelius,et al.  Towards automatic personalised content creation for racing games , 2007, 2007 IEEE Symposium on Computational Intelligence and Games.

[53]  Christina R. Strong,et al.  Estimating Player Satisfaction Through the Author ’ s Eyes , 2007 .

[54]  Nicola Beume,et al.  Intelligent moving of groups in real-time strategy games , 2008, 2008 IEEE Symposium On Computational Intelligence and Games.

[55]  Georgios N. Yannakakis,et al.  Evolving opponents for interesting interactive computer games , 2004 .

[56]  W. Marsden I and J , 2012 .

[57]  Kaj Grønbæk,et al.  IGameFloor: a platform for co-located collaborative games , 2007, ACE '07.

[58]  Matthias Rauterberg,et al.  Difficulty Scaling through Incongruity , 2008, AIIDE.

[59]  Steven Collins Computer Graphics during the 8-bit Computer Game Era , 1998 .

[60]  Peta Wyeth,et al.  GameFlow: a model for evaluating player enjoyment in games , 2005, CIE.

[61]  Jennifer Healey,et al.  Toward Machine Emotional Intelligence: Analysis of Affective Physiological State , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[62]  Risto Miikkulainen,et al.  Evolving visibly intelligent behavior for embedded game agents , 2006 .

[63]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[64]  James C. Lester,et al.  Predicting User Physiological Response for Interactive Environments: An Inductive Approach , 2006, AIIDE.

[65]  Christian Bauckhage,et al.  Learning Human Behavior from Analyzing Activities in Virtual Environments , 2007, MMI Interakt..

[66]  Nicola Beume,et al.  Measuring flow as concept for detecting game fun in the Pac-Man game , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[67]  Mitsuru Ishizuka,et al.  Persona Effect Revisited --- Using Bio-signals to Measure and Reflect the Impact of Character-bas , 2003 .

[68]  Michael Mateas,et al.  Procedural Level Design for Platform Games , 2006, AIIDE.

[69]  Georgios N. Yannakakis,et al.  Interesting games through stage complexity and topology , 2004 .

[70]  Symeon Retalis,et al.  Creating Adaptive e-Learning Board Games for School Settings Using the ELG Environment , 2008, J. Univers. Comput. Sci..

[71]  Georgios N. Yannakakis,et al.  Entertainment modeling through physiology in physical play , 2008, Int. J. Hum. Comput. Stud..

[72]  M. Csíkszentmihályi,et al.  Optimal experience: Introduction to Part IV , 1988 .

[73]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[74]  Helen Pain,et al.  Providing Cognitive and Affective Scaffolding Through Teaching Strategies: Applying Linguistic Politeness to the Educational Context , 2004, Intelligent Tutoring Systems.

[75]  Matthias Rauterberg,et al.  Incongruity-Based Adaptive Game Balancing , 2009, ACG.

[76]  David H. Ackley,et al.  Interactions between learning and evolution , 1991 .

[77]  Eugene V Beresin,et al.  Factors correlated with violent video game use by adolescent boys and girls. , 2007, The Journal of adolescent health : official publication of the Society for Adolescent Medicine.

[78]  Christoph Schlieder,et al.  Geogames: Designing Location-Based Games from Classic Board Games , 2006, IEEE Intelligent Systems.

[79]  Risto Miikkulainen,et al.  Acquiring Visibly Intelligent Behavior with Example-Guided Neuroevolution , 2007, AAAI.

[80]  N. Taatgen,et al.  How to construct a believable opponent using cognitive modeling in the game of set , 2003 .

[81]  Julian Togelius,et al.  Making Racing Fun Through Player Modeling and Track Evolution , 2006 .

[82]  李幼升,et al.  Ph , 1989 .

[83]  David Thue,et al.  Learning Player Preferences to Inform Delayed Authoring , 2007, AAAI Fall Symposium: Intelligent Narrative Technologies.

[84]  Robin Hunicke,et al.  AI for Dynamic Difficulty Adjustment in Games , 2004 .

[85]  Saleem N. Bhatti,et al.  Modelling user behaviour in networked games , 2001, MULTIMEDIA '01.

[86]  Simon M. Lucas,et al.  Evolving a Neural Network Location Evaluator to Play Ms. Pac-Man , 2005, CIG.

[87]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[88]  Henrik Hautop Lund,et al.  Playware technology for physically activating play , 2005, Artificial Life and Robotics.

[89]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[90]  Kevin Kok Wai Wong,et al.  Artificial Intelligence for Computer Games , 2009, Int. J. Comput. Games Technol..

[91]  Helen Pain,et al.  Informing the Detection of the Students' Motivational State: An Empirical Study , 2002, Intelligent Tutoring Systems.

[92]  Timo Kaukoranta,et al.  Towards a Definition of a Computer Game , 2003 .

[93]  As Sevenstery,et al.  Gartnet: a Genetic Algorithm for Routing in Telecommunications Networks , 1996 .

[94]  Georgios N. Yannakakis,et al.  TOWARDS OPTIMIZING ENTERTAINMENT IN COMPUTER GAMES , 2007, Appl. Artif. Intell..

[95]  Nicola Beume,et al.  CI enlivened ghosts for Pac-Man , 2008 .

[96]  Kenneth O. Stanley and Bobby D. Bryant and Risto Miikkulainen,et al.  Real-Time Evolution in the NERO Video Game (Winner of CIG 2005 Best Paper Award) , 2005, CIG.