Topology-optimized thermal carpet cloak expressed by an immersed-boundary level-set method via a covariance matrix adaptation evolution strategy

Abstract Our proposal, a topology optimization method for thermal carpet cloaks, eliminates the disturbance caused by a bump obstacle on a flat boundary and, despite the presence of the bump, reproduces the temperature distribution as if no bump is present. Structural topologies are expressed using an immersed-boundary level-set method and the optimal topologies corresponding to the optimal sets of the level-set functions are explored using the covariance matrix evolution strategy for minimizing the difference between the temperature field under a flat boundary and that for a cloaked bump on the boundary. The difference is evaluated as an objective function and, in the best instance, this function value for the optimal cloak approaches a value 0.000214% of that when no carpet cloak is present around the bump. By moving the location of the heat source, we investigated the performance response of the topology-optimized thermal carpet cloaks for different angles of heat flow. The thermal carpet cloaks presented exhibit good cloaking performance for heat flowing over a wide angle.

[1]  Ole Sigmund,et al.  Topology Optimized Cloak for Airborne Sound , 2013 .

[2]  Xiaohong Tang,et al.  Distributed external cloak without embedded antiobjects. , 2010, Optics letters.

[3]  Cheng-Wei Qiu,et al.  Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials , 2014, Advanced materials.

[4]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[5]  M. Wegener,et al.  Experiments on transformation thermodynamics: molding the flow of heat. , 2012, Physical review letters.

[6]  Huanyang Chen,et al.  Acoustic cloaking in three dimensions using acoustic metamaterials , 2007 .

[7]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[8]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[9]  Youhei Akimoto,et al.  CMA-ES-based structural topology optimization using a level set boundary expression—Application to optical and carpet cloaks , 2018 .

[10]  Wei Jiang,et al.  A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity , 2013 .

[11]  Garuda Fujii,et al.  CMA-ES based topology optimization for acoustic cloak , 2018 .

[12]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .

[13]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[14]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[15]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[16]  S. Y. Wang,et al.  An extended level set method for shape and topology optimization , 2007, J. Comput. Phys..

[17]  Masayuki Nakamura,et al.  Topology-optimized multiple-disk resonators obtained using level set expression incorporating surface effects. , 2015, Optics express.

[18]  Ole Sigmund,et al.  Topology optimized low-contrast all-dielectric optical cloak , 2011 .

[19]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[20]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[21]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Huanyang Chen,et al.  Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. , 2008, Physical review letters.

[23]  Yuki Sato,et al.  Heat flux manipulation with engineered thermal materials. , 2012, Physical review letters.

[24]  David R. Smith,et al.  Fluid flow control with transformation media. , 2011, Physical review letters.

[25]  N. Kikuchi,et al.  A homogenization method for shape and topology optimization , 1991 .

[26]  Garuda Fujii,et al.  Topology Optimization for a Dielectric Optical Cloak Based on an Exact Level Set Approach , 2013, IEEE Transactions on Magnetics.

[27]  S. Yamasaki,et al.  A consistent grayscale‐free topology optimization method using the level‐set method and zero‐level boundary tracking mesh , 2015 .

[28]  Baile Zhang,et al.  Active thermal cloak , 2015 .

[29]  Claude Amra,et al.  Transformation thermodynamics: cloaking and concentrating heat flux. , 2012, Optics express.

[30]  Jiping Huang,et al.  Shaped graded materials with an apparent negative thermal conductivity , 2008 .

[31]  Takayuki Yamada,et al.  Optimal design of electromagnetic cloaks with multiple dielectric materials by topology optimization , 2017 .

[32]  Fan Yang,et al.  dc electric invisibility cloak. , 2012, Physical review letters.

[33]  Ole Sigmund,et al.  Towards all-dielectric, polarization-independent optical cloaks , 2012 .

[34]  M. Lipson,et al.  Silicon nanostructure cloak operating at optical frequencies , 2009, 0904.3508.

[35]  Jinghua Teng,et al.  Manipulating DC currents with bilayer bulk natural materials. , 2014, Advanced materials.

[36]  Xiaohong Tang,et al.  External cloak with homogeneous material , 2009 .

[37]  Takayuki Yamada,et al.  An immersed boundary element method for level‐set based topology optimization , 2013 .

[38]  Baowen Li,et al.  Experimental demonstration of a bilayer thermal cloak. , 2014, Physical review letters.

[39]  Takayuki Yamada,et al.  Level set based topology optimization for optical cloaks , 2013 .

[40]  C. Qiu,et al.  Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields , 2016 .

[41]  Youhei Akimoto,et al.  Exploring optimal topology of thermal cloaks by CMA-ES , 2018 .

[42]  Tiancheng Han,et al.  Arbitrarily polygonal transient thermal cloaks with natural bulk materials in bilayer configurations , 2017 .

[43]  Haochun Zhang,et al.  Predicting and analyzing interaction of the thermal cloaking performance through response surface method , 2017 .

[44]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[45]  Jian-Shiuh Chen,et al.  Cloak for curvilinearly anisotropic media in conduction , 2008 .

[46]  B. Bourdin Filters in topology optimization , 2001 .

[47]  Fei Sun,et al.  Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization , 2013 .

[48]  J. Pendry,et al.  Hiding under the carpet: a new strategy for cloaking. , 2008, Physical review letters.

[49]  Youhei Akimoto,et al.  Direct-current electric invisibility through topology optimization , 2018, Journal of Applied Physics.

[50]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.

[51]  T. E. Bruns,et al.  Topology optimization of non-linear elastic structures and compliant mechanisms , 2001 .

[52]  S. Cummer,et al.  One path to acoustic cloaking , 2007 .