Canonical failure modes of real-time control systems: insights from cognitive theory

Newly developed necessary conditions statistical models from cognitive theory are applied to generalisation of the data-rate theorem for real-time control systems. Rather than graceful degradation under stress, automatons and man/machine cockpits appear prone to characteristic sudden failure under demanding fog-of-war conditions. Critical dysfunctions span a spectrum of phase transition analogues, ranging from a ground state of ‘all targets are enemies’ to more standard data-rate instabilities. Insidious pathologies also appear possible, akin to inattentional blindness consequent on overfocus on an expected pattern. Via no-free-lunch constraints, different equivalence classes of systems, having structure and function determined by ‘market pressures’, in a large sense, will be inherently unreliable under different but characteristic canonical stress landscapes, suggesting that deliberate induction of failure may often be relatively straightforward. Focusing on two recent military case histories, these results provide a caveat emptor against blind faith in the current path-dependent evolutionary trajectory of automation for critical real-time processes.

[1]  Robin J. Evans,et al.  Feedback Control Under Data Rate Constraints: An Overview , 2007, Proceedings of the IEEE.

[2]  Jordan B. Pollack,et al.  A game-theoretic and dynamical-systems analysis of selection methods in coevolution , 2005, IEEE Transactions on Evolutionary Computation.

[3]  Aleksandr Yakovlevich Khinchin,et al.  Mathematical foundations of information theory , 1959 .

[4]  K. Wilson The renormalization group and critical phenomena , 1983 .

[5]  Anant Sahai,et al.  The Necessity and Sufficiency of Anytime Capacity for Stabilization of a Linear System Over a Noisy Communication Link—Part I: Scalar Systems , 2006, IEEE Transactions on Information Theory.

[6]  R. Wallace Spontaneous symmetry breaking in a non-rigid molecule approach to intrinsically disordered proteins. , 2012, Molecular bioSystems.

[7]  Michael Atiyah,et al.  The index of elliptic operators on compact manifolds , 1963 .

[8]  Raúl Toral,et al.  Nonequilibrium phase transitions induced by multiplicative noise , 1997 .

[9]  Edwin D. de Jong,et al.  A Monotonic Archive for Pareto-Coevolution , 2007, Evolutionary Computation.

[10]  松本 幸夫 An introduction to Morse theory , 2002 .

[11]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[12]  Tim Clarke,et al.  Semantic Bias in Program Coevolution , 2013, EuroGP.

[13]  D. K. Arrell,et al.  Network Systems Biology for Drug Discovery , 2010, Clinical pharmacology and therapeutics.

[14]  Aaron D. Wyner,et al.  Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute of Radio Engineers, International Convention Record, vol. 7, 1959. , 1993 .

[15]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[16]  B. Baars A cognitive theory of consciousness , 1988 .

[17]  M. Pettini Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics , 2007, 0711.1484.

[18]  Rodrick Wallace,et al.  Toward formal models of biologically inspired, highly parallel machine cognition , 2008, Int. J. Parallel Emergent Distributed Syst..

[19]  Van den Broeck C,et al.  Noise-induced nonequilibrium phase transition. , 1994, Physical review letters.

[20]  A. Weinstein Groupoids: unifying internal and external symmetry , 1996, math/9602220.

[21]  R. Wallace Consciousness: A Mathematical Treatment of the Global Neuronal Workspace Model , 2005 .

[22]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[23]  K. Wilson Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture , 1971 .

[24]  Rodrick Wallace,et al.  Cognition and biology: perspectives from information theory , 2013, Cognitive Processing.

[25]  Thomas M. English,et al.  Evaluation of Evolutionary and Genetic Optimizers: No Free Lunch , 1996, Evolutionary Programming.

[26]  Massimo Franceschetti,et al.  Data Rate Theorem for Stabilization Over Time-Varying Feedback Channels , 2009, IEEE Transactions on Automatic Control.

[27]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[28]  L. Goddard Information Theory , 1962, Nature.

[29]  Edwin D. de Jong,et al.  Coevolutionary Principles , 2012, Handbook of Natural Computing.

[30]  I. Cohen,et al.  Immune information, self-organization and meaning. , 1998, International immunology.

[31]  Jeffrey K. Bassett,et al.  An Analysis of Cooperative Coevolutionary Algorithms A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at George Mason University , 2003 .

[32]  Bernard J. Baars,et al.  Global Workspace Dynamics: Cortical “Binding and Propagation” Enables Conscious Contents , 2013, Front. Psychol..

[33]  Charles H. Bennett Logical depth and physical complexity , 1988 .

[34]  Rodrick Wallace,et al.  Programming coevolutionary machines: the emerging conundrum , 2009, Int. J. Parallel Emergent Distributed Syst..

[35]  Seth Lloyd,et al.  Information-theoretic approach to the study of control systems , 2001, physics/0104007.

[36]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[37]  R. Hentschke Non-Equilibrium Thermodynamics , 2014 .

[38]  R. Ferrière,et al.  Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. , 2006, Theoretical population biology.

[39]  Keyou You,et al.  Survey of Recent Progress in Networked Control Systems , 2013 .

[40]  S. Sahai,et al.  The necessity and sufficiency of anytime capacity for control over a noisy communication link , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[41]  James D. Hollan,et al.  Distributed cognition: toward a new foundation for human-computer interaction research , 2000, TCHI.

[42]  R. Wallace Culture and inattentional blindness: a global workspace perspective. , 2007, Journal of Theoretical Biology.

[43]  Lei Ren,et al.  Cloud manufacturing: a new manufacturing paradigm , 2014, Enterp. Inf. Syst..

[44]  Tad Hogg,et al.  Phase Transitions and the Search Problem , 1996, Artif. Intell..

[45]  Rodrick Wallace,et al.  Tunable epigenetic catalysis: programming real-time cognitive machines , 2010, Int. J. Parallel Emergent Distributed Syst..

[46]  P. Protter Stochastic integration and differential equations , 1990 .

[47]  Rudolf Paul Wiegand,et al.  An analysis of cooperative coevolutionary algorithms , 2004 .

[48]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[49]  Sanjoy K. Mitter,et al.  Control with Limited Information , 2001, Eur. J. Control.

[50]  R. Wallace,et al.  Collective Consciousness and its Discontents , 2008 .

[51]  Sekhar Tatikonda,et al.  Control over noisy channels , 2004, IEEE Transactions on Automatic Control.

[52]  R. Ellis,et al.  Entropy, large deviations, and statistical mechanics , 1985 .

[53]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[54]  L. Hood,et al.  Reverse Engineering of Biological Complexity , 2007 .

[55]  H. Kitano Towards a theory of biological robustness , 2007, Molecular systems biology.

[56]  Ronald Brown From Groups to Groupoids: a Brief Survey , 1987 .

[57]  B. Baars Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. , 2005, Progress in brain research.

[58]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[59]  Hiroaki Kitano,et al.  Biological robustness , 2008, Nature Reviews Genetics.

[60]  Prashant G. Mehta,et al.  Bode-Like Fundamental Performance Limitations in Control of Nonlinear Systems , 2010, IEEE Transactions on Automatic Control.

[61]  P. Kidwell,et al.  The universal turing machine: a half-century survey , 1996, IEEE Annals of the History of Computing.

[62]  Katherine A. Austin,et al.  Living Under Drones : Death , Injury and Trauma to Civilians from US Drone Practices in Pakistan , 2012 .

[63]  Meike J. Wittmann,et al.  Mathematical Ecology , 2006 .

[64]  B. Baars,et al.  How conscious experience and working memory interact , 2003, Trends in Cognitive Sciences.