Synthesis, plasmonic properties, and CWA simulant decontamination activity of first row early transition metal nitride powders and nanomaterials

[1]  A. Govorov,et al.  Comparing Photoelectrochemical Methanol Oxidation Mechanisms for Gold versus Titanium Nitride Nanoparticles Dispersed in TiO2 Matrix , 2019, Journal of The Electrochemical Society.

[2]  I. Vurgaftman,et al.  Energy-tunable photocatalysis by hot carriers generated by surface plasmon polaritons , 2019, Journal of Materials Chemistry A.

[3]  Hangqi Zhao,et al.  Quantifying hot carrier and thermal contributions in plasmonic photocatalysis , 2018, Science.

[4]  A. Balandin,et al.  Plasmonic Core–Shell Zirconium Nitride–Silicon Oxynitride Nanoparticles , 2018, ACS Energy Letters.

[5]  Robert B. Balow,et al.  Rapid Decontamination of Chemical Warfare Agent Simulant with Thermally Activated Porous Polymer Foams , 2018, Industrial & Engineering Chemistry Research.

[6]  Robert B. Balow,et al.  Air Activated Self-Decontaminating Polydicyclopentadiene PolyHIPE Foams for Rapid Decontamination of Chemical Warfare Agents. , 2018, Macromolecular rapid communications.

[7]  H. Atwater,et al.  Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes. , 2018, Nano letters.

[8]  Robert B. Balow,et al.  Environmental Effects on Zirconium Hydroxide Nanoparticles and Chemical Warfare Agent Decomposition: Implications of Atmospheric Water and Carbon Dioxide. , 2017, ACS applied materials & interfaces.

[9]  Taifeng Liu,et al.  Positioning the Water Oxidation Reaction Sites in Plasmonic Photocatalysts. , 2017, Journal of the American Chemical Society.

[10]  Adam D. Dunkelberger,et al.  Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysis. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[11]  A. Kildishev,et al.  Broadband Hot‐Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride , 2017 .

[12]  Robert B. Balow,et al.  Comparative roles of Zr 4+ and Ni 2+ Wells-Dawson hetero-metal substituted polyoxometalates on oxidation of chemical contaminants , 2017 .

[13]  Bryan M. Wong,et al.  A Non-Thermal Plasma Route to Plasmonic TiN Nanoparticles , 2017 .

[14]  H. Atwater,et al.  Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion , 2016 .

[15]  S. Meng,et al.  Quantum Mode Selectivity of Plasmon-Induced Water Splitting on Gold Nanoparticles. , 2016, ACS nano.

[16]  M. Marelli,et al.  α-Fe2O3/NiOOH: An Effective Heterostructure for Photoelectrochemical Water Oxidation , 2015 .

[17]  Yuichi Sato,et al.  A new bimetallic plasmonic photocatalyst consisting of gold(core)-copper(shell) nanoparticle and titanium(IV) oxide support , 2015 .

[18]  Urcan Guler,et al.  Plasmonics on the slope of enlightenment: the role of transition metal nitrides. , 2015, Faraday discussions.

[19]  A. Manivannan,et al.  Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. , 2014, Journal of the American Chemical Society.

[20]  Vladimir M. Shalaev,et al.  Refractory Plasmonics , 2014, Science.

[21]  Justus C. Ndukaife,et al.  Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles. , 2013, Nano letters.

[22]  G. Peterson,et al.  Reactions of VX, GD, and HD with Zr(OH)4: Near Instantaneous Decontamination of VX , 2012 .

[23]  Vladimir M. Shalaev,et al.  Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications , 2012, Applied Physics B.

[24]  N. Melosh,et al.  Plasmonic energy collection through hot carrier extraction. , 2011, Nano letters.

[25]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[26]  J. Parlebas,et al.  Structural and optical properties of vanadium and hafnium nitride nanoscale films: effect of stoichiometry , 2007 .

[27]  Robert L. Maynard,et al.  Responding to Chemical Terrorism: Operational Planning and Decontamination , 2007 .

[28]  Nancy B. Munro,et al.  The Fate of Chemical Warfare Agents in the Environment , 2007 .

[29]  David C. Sorrick,et al.  Decontamination of VX, GD, and HD on a surface using modified vaporized hydrogen peroxide. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[30]  Claire Wilson,et al.  Titanium(III) Alkoxy-N-heterocyclic Carbenes and a Safe, Low-Cost Route to TiCl3(THF)3 , 2007 .

[31]  G. Wagner,et al.  Rapid Nucleophilic/Oxidative Decontamination of Chemical Warfare Agents , 2002 .

[32]  K. Klabunde,et al.  Reactions of VX, GB, GD, and HD with nanosize Al(2)O(3). Formation of aluminophosphonates. , 2001, Journal of the American Chemical Society.

[33]  James A. Baker,et al.  Decontamination of chemical warfare agents , 1992 .

[34]  Jörg Fink,et al.  Dielectric properties of TiC x , TiN x , VC x , and VN x from 1.5 to 40 eV determined by electron-energy-loss spectroscopy , 1984 .

[35]  H. Zeiss,et al.  Notes: Chromium Trichloride Tetrahydrofuranate , 1958 .