Specific integrin labeling in living cells using functionalized nanocrystals.

We present an integrin labeling method using functionalized quantum dots (QDs). Cyclic Arg-Gly-Asp (RGD) peptides and a biotin-streptavidin linkage are used to specifically couple individual QDs to integrins of living cells. The spacer distance between the RGD sequence and the QD surface is a crucial parameter to ensure specific binding to individual alpha(v)beta(3) integrins of osteoblast cells. Despite blinking, the position of single QDs is tracked with nanometer precision and localized diffusive behavior is observed. We show that blinking events do not prevent the acquisition of quantitative parameters from the QD trajectories.

[1]  Jason E Gestwicki,et al.  Synthetic multivalent ligands as probes of signal transduction. , 2006, Angewandte Chemie.

[2]  Erkki Ruoslahti,et al.  Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule , 1984, Nature.

[3]  G. Edelman Cell adhesion molecules. , 1983, Science.

[4]  Richard O. Hynes,et al.  Integrins: Versatility, modulation, and signaling in cell adhesion , 1992, Cell.

[5]  Louis E. Brus,et al.  Luminescence Photophysics in Semiconductor Nanocrystals , 1999 .

[6]  David A. Cheresh,et al.  Definition of Two Angiogenic Pathways by Distinct αv Integrins , 1995, Science.

[7]  S. Goodman,et al.  Structural and Functional Aspects of RGD-Containing Cyclic Pentapeptides as Highly Potent and Selective Integrin αVβ3 Antagonists , 1996 .

[8]  B. Nies,et al.  Surface Coating with Cyclic RGD Peptides Stimulates Osteoblast Adhesion and Proliferation as well as Bone Formation , 2000, Chembiochem : a European journal of chemical biology.

[9]  K. Yamada,et al.  The interaction of fibronectin fragments with fibroblastic cells. , 1985, The Journal of biological chemistry.

[10]  Klaas Nicolay,et al.  Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. , 2006, Nano letters.

[11]  Laura L. Kiessling,et al.  Synthetische multivalente Liganden als Sonden fÜr die Signaltransduktion , 2006 .

[12]  E. Sackmann,et al.  Digital imaging processing for biophysical applications , 2004 .

[13]  E. Sackmann,et al.  Intervesicle cross-linking with integrin alpha IIb beta 3 and cyclic-RGD-lipopeptide. A model of cell-adhesion processes. , 2000, Biochemistry.

[14]  Horst Kessler,et al.  RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. , 2003, Biomaterials.

[15]  B. Nies,et al.  Selective RGD-Mediated Adhesion of Osteoblasts at Surfaces of Implants. , 1999, Angewandte Chemie.

[16]  J. Eble Integrins—A Versatile and Old Family of Cell Adhesion Molecules , 1997 .

[17]  M. Dard,et al.  Structure and function of RGD peptides involved in bone biology , 2003, Cellular and Molecular Life Sciences CMLS.

[18]  J Engel,et al.  Selective recognition of cyclic RGD peptides of NMR defined conformation by alpha IIb beta 3, alpha V beta 3, and alpha 5 beta 1 integrins. , 1994, The Journal of biological chemistry.

[19]  G. Fields,et al.  Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. , 2009, International journal of peptide and protein research.

[20]  Horst Kessler,et al.  Multimeric cyclic RGD peptides as potential tools for tumor targeting: solid-phase peptide synthesis and chemoselective oxime ligation. , 2003, Chemistry.

[21]  E. Sackmann,et al.  Measuring Ligand−Receptor Unbinding Forces with Magnetic Beads: Molecular Leverage† , 2000 .

[22]  K. Barlos,et al.  Darstellung geschützter peptid-fragmente unter einsatz substituierter triphenylmethyl-harze , 1989 .

[23]  Arnoud Sonnenberg,et al.  Function and interactions of integrins , 2001, Cell and Tissue Research.

[24]  Sanjiv S Gambhir,et al.  Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. , 2006, Nano letters.

[25]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[26]  R. Haubner,et al.  Stereoisomere Peptid-Bibliotheken und Peptidmimetika zum Design von selektiven Inhibitoren des αv β3-Integrins für eine neuartige Krebstherapie , 1997 .

[27]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[28]  Shimon Weiss,et al.  Properties of Fluorescent Semiconductor Nanocrystals and their Application to Biological Labeling , 2001 .

[29]  David A. Weitz,et al.  Tracking the Dynamics of Single Quantum Dots: Beating the Optical Resolution Twice , 2002 .

[30]  Joachim P Spatz,et al.  Activation of integrin function by nanopatterned adhesive interfaces. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[31]  D. Boturyn,et al.  Multivalent RGD synthetic peptides as potent αVβ3 integrin ligands , 2006 .

[32]  D. Marsh,et al.  Structure, dynamics and composition of the lipid-protein interface. Perspectives from spin-labelling. , 1998, Biochimica et biophysica acta.

[33]  P. Schaffner,et al.  Selektive RGD-vermittelte Adhsion von Osteoblasten an Implantat-Oberflchen , 1999 .

[34]  Horst Kessler,et al.  Spatial Screening for the Identification of the Bioactive Conformation of Integrin Ligands , 2006 .

[35]  Philippe Rostaing,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking , 2003, Science.

[36]  M. Pfaff Recognition Sites of RGD-Dependent Integrins , 1997 .