Confidence sets for nonparametric wavelet regression

We construct nonparametric confidence sets for regression functions using wavelets that are uniform over Besov balls. We consider both thresholding and modulation estimators for the wavelet coefficients. The confidence set is obtained by showing that a pivot process, constructed from the loss function, converges uniformly to a mean zero Gaussian process. Inverting this pivot yields a confidence set for the wavelet coefficients, and from this we obtain confidence sets on functionals of the regression curve.

[1]  Michael H. Neumann Strong approximation of density estimators from weakly dependent observations by density estimators from independent observations , 1998 .

[2]  T. Cai Adaptive wavelet estimation : A block thresholding and oracle inequality approach , 1999 .

[3]  T. Cai,et al.  An adaptation theory for nonparametric confidence intervals , 2004, math/0503662.

[4]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[5]  R. Beran,et al.  Modulation Estimators and Confidence Sets , 1998 .

[6]  C. Stein Estimation of the Mean of a Multivariate Normal Distribution , 1981 .

[7]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[8]  J. Marron,et al.  SCALE SPACE VIEW OF CURVE ESTIMATION , 2000 .

[9]  Stuart Barber,et al.  Posterior probability intervals for wavelet thresholding , 2002 .

[10]  Rudolf Beran,et al.  React Scatterplot Smoothers: Superefficiency through Basis Economy , 2000 .

[11]  S. Efromovich Quasi-Linear Wavelet Estimation , 1999 .

[12]  Ker-Chau Li,et al.  Honest Confidence Regions for Nonparametric Regression , 1989 .

[13]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[14]  T. Tony Cai,et al.  WAVELET SHRINKAGE FOR NONEQUISPACED SAMPLES , 1998 .

[15]  Mark G. Low On nonparametric confidence intervals , 1997 .

[16]  I. Johnstone,et al.  ASYMPTOTIC MINIMAXITY OF WAVELET ESTIMATORS WITH SAMPLED DATA , 1999 .

[17]  G. Nason Wavelet Shrinkage using Cross-validation , 1996 .

[18]  L. Brown,et al.  Direct asymptotic equivalence of nonparametric regression and the infinite dimensional location problem , 2001 .

[19]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[20]  Sujit K. Ghosh,et al.  Essential Wavelets for Statistical Applications and Data Analysis , 2001, Technometrics.

[21]  D. Picard,et al.  Adaptive confidence interval for pointwise curve estimation , 2000 .