Modern Nuclear Data Evaluation with the TALYS Code System

Abstract This paper presents a general overview of nuclear data evaluation and its applications as developed at NRG, Petten. Based on concepts such as robustness, reproducibility and automation, modern calculation tools are exploited to produce original nuclear data libraries that meet the current demands on quality and completeness. This requires a system which comprises differential measurements, theory development, nuclear model codes, resonance analysis, evaluation, ENDF formatting, data processing and integral validation in one integrated approach. Software, built around the TALYS code, will be presented in which all these essential nuclear data components are seamlessly integrated. Besides the quality of the basic data and its extensive format testing, a second goal lies in the diversity of processing for different type of users. The implications of this scheme are unprecedented. The most important are: 1. Complete ENDF-6 nuclear data files, in the form of the TENDL library, including covariance matrices, for many isotopes, particles, energies, reaction channels and derived quantities. All isotopic data files are mutually consistent and are supposed to rival those of the major world libraries. 2. More exact uncertainty propagation from basic nuclear physics to applied (reactor) calculations based on a Monte Carlo approach: “Total” Monte Carlo (TMC), using random nuclear data libraries. 3. Automatic optimization in the form of systematic feedback from integral measurements back to the basic data. This method of work also opens a new way of approaching the analysis of nuclear applications, with consequences in both applied nuclear physics and safety of nuclear installations, and several examples are given here. This applied experience and feedback is integrated in a final step to improve the quality of the nuclear data, to change the users vision and finally to orchestrate their integration into simulation codes.

[1]  Arjan J. Koning,et al.  Local and global nucleon optical models from 1 keV to 200 MeV , 2003 .

[2]  Toshikazu Takeda,et al.  Estimation of Error Propagation in Monte-Carlo Burnup Calculations , 1999 .

[3]  H. Gruppelaar,et al.  Analysis of continuum gamma-ray emission in precompound-decay reactions , 1985 .

[4]  Kalbach Systematics of continuum angular distributions: Extensions to higher energies. , 1988, Physical review. C, Nuclear physics.

[5]  K. Shibata,et al.  JENDL-4.0: A New Library for Nuclear Science and Engineering , 2011 .

[6]  Axel,et al.  ELECTRIC DIPOLE GROUND STATE TRANSITION WIDTH STRENGTH FUNCTION AND 7 MEV PHOTON INTERACTIONS. Technical Report No. 30 , 1962 .

[7]  Boris Pritychenko,et al.  Proton scattering by the unstable neutron-rich isotopes 42,44 Ar , 2000 .

[8]  Stéphane Goriely,et al.  Improved global α-optical model potential at low energies , 2002 .

[9]  Arjan J. Koning,et al.  A global pre-equilibrium analysis from 7 to 200 MeV based on the optical model potential , 2004 .

[10]  Taro Tamura,et al.  ANALYSES OF THE SCATTERING OF NUCLEAR PARTICLES BY COLLECTIVE NUCLEI IN TERMS OF THE COUPLED-CHANNEL CALCULATION , 1965 .

[11]  Arjan J. Koning,et al.  Covariance Data in the Fast Neutron Region , 2011 .

[12]  Arjan J. Koning,et al.  Pb and Bi neutron data libraries with full covariance evaluation and improved integral tests , 2008 .

[13]  M. Herman,et al.  Semi-empirical determination of the shell correction temperature and spin dependence by means of nuclear fission , 1994 .

[14]  N. M. Larson,et al.  ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data , 2011 .

[15]  Walter,et al.  Optical model description of the neutron interaction with 116Sn and 120Sn over a wide energy range. , 1989, Physical review. C, Nuclear physics.

[16]  Chadwick,et al.  Pauli-blocking in the quasideuteron model of photoabsorption. , 1991, Physical review. C, Nuclear physics.

[17]  Chrien,et al.  Radiative strength in the compound nucleus 157Gd. , 1993, Physical review. C, Nuclear physics.

[18]  D. Madland,et al.  Prompt fission neutron spectra and average prompt neutron multiplicities , 1982 .

[19]  A. J. Koning,et al.  Modern Nuclear Data Evaluation: Straight from Nuclear Physics to Applications , 2011 .

[20]  André Lejeune,et al.  Optical-model potential in nuclear matter from Reid's hard core interaction , 1974 .

[21]  Turek,et al.  Elastic deuteron scattering and optical model parameters at energies up to 100 MeV. , 1988, Physical review. C, Nuclear physics.

[22]  R. K. Meulekamp,et al.  Calculating the Effective Delayed Neutron Fraction with Monte Carlo , 2006 .

[23]  André Lejeune,et al.  Many Body Theory of Nuclear Matter , 1976 .

[24]  Shigueo Watanabe,et al.  High energy scattering of deuterons by complex nuclei , 1958 .

[25]  Kalbach Two-component exciton model: Basic formalism away from shell closures. , 1986, Physical review. C, Nuclear physics.

[26]  M. Herman,et al.  ENDF-6 Formats Manual Data Formats and Procedures for the Evaluated Nuclear Data File ENDF/B-VI and ENDF/B-VII Written by the Members of the Cross Sections Evaluation Working Group Last Revision Edited by , 2009 .

[27]  Haixia An,et al.  Global deuteron optical model potential for the energy range up to 183 MeV , 2006 .

[28]  I Kodeli,et al.  Radiation shielding and dosimetry experiments updates in the SINBAD database. , 2005, Radiation protection dosimetry.

[29]  William A. Fowler,et al.  Tables of thermonuclear-reaction-rate data for neutron-induced reactions on heavy nuclei , 1976 .

[30]  Arjan J. Koning,et al.  Exact nuclear data uncertainty propagation for fusion neutronics calculations , 2010 .

[31]  Peter Edward Hodgson,et al.  Nuclear reactions and nuclear structure , 1971 .

[32]  Nils Olsson,et al.  Neutron elastic and inelastic scattering from Mg, Si, S, Ca, Cr, Fe and Ni AT En = 21.6 MeV , 1990 .

[33]  S. Kailas,et al.  RIPL – Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations , 2009 .

[34]  Arjan J. Koning,et al.  Evaluation and Adjustment of the Neutron-Induced Reactions of 63,65Cu , 2012 .

[35]  André Lejeune,et al.  Microscopic calculation of the symmetry and Coulomb components of the complex optical-model potential , 1977 .

[36]  W. D. Myers,et al.  NUCLEAR MASSES AND DEFORMATIONS , 1966 .

[37]  C. Y. Fu,et al.  Approximation of Precompound Effects in Hauser-Feshbach Codes for Calculating Double Differential ( n, xn ) Cross Sections , 1988 .

[38]  D. Brink,et al.  Individual particle and collective aspects of the nuclear photoeffect , 1957 .

[39]  R. H. Rodriguez-Pasqués,et al.  Physics and chemistry of fission: Proceedings of a symposium at Salzburg, Austria, 22–26 March, sponsored by IAEA, Vienna 1965. vol I, $13.00; vol II, $10.00 , 1966 .

[40]  C. V. Parks,et al.  OECD/NEA burnup credit calculational criticality benchmark Phase I-B results , 1996 .

[41]  J. F. Briesmeister MCNP-A General Monte Carlo N-Particle Transport Code , 1993 .

[42]  Arjan J. Koning,et al.  Nuclear Data Uncertainty Propagation for a Sodium Fast Reactor , 2011 .

[43]  C. Kalbach,et al.  Surface and collective effects in preequilibrium reactions , 2000 .

[44]  A. V. Ignatyuk,et al.  Role of collective effects in the systematics of nuclear level densities , 1979 .

[45]  Arjan J. Koning,et al.  What Can We Expect from the Use of Nuclear Models Implemented inMCNPX at Projectile Energies below 150 MeV? Detailed Comparision with Experimental Data , 2011 .

[46]  S. Goriely,et al.  Skyrme-Hartree-Fock-Bogoliubov nuclear mass formulas: crossing the 0.6 MeV accuracy threshold with microscopically deduced pairing. , 2009, Physical review letters.

[47]  A. J. Koning,et al.  Comparisons between various width fluctuation correction factors for compound nucleus reactions , 2003 .

[48]  A.C.Wahl Systematics of Fission-Product Yields , 2002 .

[49]  André Lejeune,et al.  Optical-model potential in finite nuclei from Reid's hard core interaction , 1977 .

[50]  A. Jensen,et al.  Energy dependence of the rotational enhancement factor in the level density , 1983 .

[51]  Young,et al.  Multiple preequilibrium emission in Feshbach-Kerman-Koonin analyses. , 1994, Physical review. C, Nuclear physics.

[52]  Arjan J. Koning,et al.  TALYS-1.0 , 2007 .

[53]  Roberto Capote,et al.  An Investigation of the Performance of the Unified Monte Carlo Method of Neutron Cross Section Data Evaluation , 2008 .

[54]  P. Ribon,et al.  The resonance self-shielding calculation with regularized random ladders , 1986 .

[55]  E. Bauge,et al.  Semimicroscopic nucleon-nucleus spherical optical model for nuclei with A>=40 at energies up to 200 MeV , 1998 .

[56]  M. W. Herman,et al.  Neutron cross section covariances from thermal energy to 20 MeV , 2007 .

[57]  P. Dossantos-Uzarralde,et al.  A Polynomial Chaos Approach for Nuclear Data Uncertainties Evaluations , 2008 .

[58]  A. H. Wapstra,et al.  The Ame2003 atomic mass evaluation: (I). Evaluation of input data, adjustment procedures☆ , 2003 .

[59]  E. Bauge,et al.  Lane consistent, semimicroscopic nucleon nucleus optical model , 2001 .

[60]  Arjan J. Koning,et al.  Uncertainties for criticality-safety benchmarks and keff distributions , 2009 .

[61]  Roberto Capote,et al.  Unified Monte Carlo and Mixed Probability Functions , 2011 .

[62]  Naoteru Odano,et al.  Nuclear Data Evaluations for JENDL High‐Energy File , 2005 .

[63]  A. Ventura,et al.  Fission of Light Actinides: 232Th(n,f) and 231Pa(n,f) Reactions , 2006 .

[64]  Arjan J. Koning,et al.  The JEFF‐3.0/A Neutron Activation File—New Features, Validation, and Usage , 2005 .

[65]  Arjan J. Koning,et al.  Nuclear data uncertainty propagation: Perturbation vs. Monte Carlo , 2011 .

[66]  Osamu Iwamoto,et al.  Global coupled-channel optical potential for nucleon-actinide interaction from 1 keV to 200 MeV , 2004 .

[67]  Arjan J. Koning,et al.  Uncertainties for criticality‐safety benchmarks and consequences for nuclear data measurements , 2009 .

[68]  Canada,et al.  Fission barriers of neutron-rich and superheavy nuclei calculated with the ETFSI method , 2000 .

[69]  J. M. Quesada,et al.  Analytical expressions for the dispersive contributions to the nucleon-nucleus optical potential , 2003 .

[70]  M. W. Herman,et al.  EMPIRE: Nuclear Reaction Model Code System for Data Evaluation , 2007 .

[71]  A. Koning,et al.  Uncertainties for the Kalimer Sodium Fast Reactor: Void Reactivity Coefficient, k eff, βeff, Depletion and Radiotoxicity , 2011 .

[72]  Y. Blumenfeld,et al.  Proton scattering from the unstable nuclei 30S and 34Ar: structural evolution along the sulfur and argon isotopic chains , 2001 .

[73]  Roberto Capote,et al.  Nuclear data evaluation methodology including estimates of covariances , 2010 .

[74]  P. Moldauer,et al.  Statistics and the average cross section , 1980 .

[75]  O. Schwerer,et al.  The art of collecting experimental data internationally: EXFOR, CINDA and the NRDC network , 2007 .

[76]  E. Betak,et al.  Two-component exciton model , 1983 .

[77]  H. Gruppelaar,et al.  Random-walk model of precompound decay: Dynamics and multi-particle emission , 1981 .

[78]  W. P. Poenitz,et al.  Neutron radiative capture. , 1984 .

[79]  Qingbiao Shen,et al.  Deuteron global optical model potential for energies up to 200 MeV , 2006 .

[80]  J. S. Zhang,et al.  The Updated Vversion of Chinese Evaluated Nuclear Data Library (CENDL-3.1) , 2011 .

[81]  D. L. Smith,et al.  Covariance matrices for nuclear cross sections derived from nuclear model calculations. , 2005 .

[82]  M. Jong,et al.  Projectile-fragment yields as a probe for the collective enhancement in the nuclear level density , 1998 .

[83]  Arjan J. Koning,et al.  Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method , 2008 .

[84]  D. Neudecker,et al.  Comparison of Covariance Matrices Obtained by Different Methods , 2011 .

[85]  N. Bianchi,et al.  Phenomenological statistical analysis of level densities, decay widths and lifetimes of excited nuclei , 1992 .

[86]  Andreas Pautz,et al.  Uncertainty Analyses with Nuclear Covariance Ddata in Reactor Core Ccalculations , 2011 .

[87]  Arjan J. Koning,et al.  How to Randomly Evaluate Nuclear Data: A New Data Adjustment Method Applied to 239Pu , 2011 .

[88]  A. Sierk,et al.  Macroscopic model of rotating nuclei. , 1986, Physical review. C, Nuclear physics.

[89]  Y. Blumenfeld,et al.  Proton scattering by short lived sulfur isotopes , 1999 .

[90]  William A. Wieselquist,et al.  Nuclear data uncertainty propagation in a lattice physics code using stochastic sampling , 2012 .

[91]  Raman,et al.  Density of discrete levels in 116Sn. , 1993, Physical review. C, Nuclear physics.

[92]  A. J. Koning,et al.  Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications , 2008, 0806.2239.

[93]  M. G. Itkis,et al.  Anomalous influence of the angular momentum on the fission of light nuclei by protons and α particles , 1975 .

[94]  D. F. Da Cruz,et al.  On the evaluation of 23Na neutron-induced reactions and validations , 2010 .

[95]  Z. Vrcelj,et al.  Global optical model potential for elastic deuteron scattering from 12 to 90 MeV , 1980 .

[96]  Arjan J. Koning,et al.  New Nuclear Data Evaluations for Ca, Sc, Fe, Ge, Pb, and Bi Isotopes , 2005 .

[97]  Robert R. Scheerbaum,et al.  Spin-orbit splitting in nuclei near closed shells: (I). Contribution of the two-body spin-orbit interaction , 1976 .

[98]  Frédéric Wrobel Nucleon induced recoil ions in microelectronics , 2007 .

[99]  E. Bauge,et al.  Neutron scattering from the155,156,157,158,160Gdisotopes: Measurements and analyses with a deformed, semimicroscopic optical model , 2000 .

[100]  V. M. Maslov,et al.  235U(n, F), 233U(n, F) and 239Pu(n, F) Prompt Fission Neutron Spectra , 2011 .

[101]  Mark B. Chadwick,et al.  Comprehensive nuclear model calculations: Introduction to the theory and use of the GNASH code , 1992 .

[102]  Robert E. MacFarlane,et al.  Methods for Processing ENDF/B-VII with NJOY , 2010 .

[103]  Arjan J. Koning,et al.  Towards sustainable nuclear energy: Putting nuclear physics to work , 2008 .

[104]  Uhl,et al.  Test of gamma-ray strength functions in nuclear reaction model calculations. , 1990, Physical review. C, Nuclear physics.

[105]  E. Gadioli,et al.  Pre-Equilibrium Nuclear Reactions , 1992 .

[106]  George F. Bertsch,et al.  Direct Nuclear Reactions , 1984 .

[107]  Kalbach Surface effects in the exciton model of preequilibrium nuclear reactions. , 1985, Physical review. C, Nuclear physics.

[108]  M. Blann,et al.  Global test of modified precompound decay models , 1983 .

[109]  H. G. Hughes,et al.  Cross-Section Evaluations to 150 MeV for Accelerator-Driven Systems and Implementation in MCNPX , 1999 .

[110]  Arjan J. Koning,et al.  Propagation of nuclear data uncertainty: Exact or with covariances , 2010 .

[111]  A. J. Koning,et al.  Propagation of 235,236,238U and 239Pu Nuclear Data Uncertainties for a Typical PWR Fuel Element , 2012 .

[112]  Kiril Velkov,et al.  Aleatoric and epistemic uncertainties in sampling based nuclear data uncertainty and sensitivity analyses , 2012 .

[113]  W. Swiatecki,et al.  Equilibrium configurations of rotating charged or gravitating liquid masses with surface tension. II , 1974 .

[114]  Arjan J. Koning,et al.  Exact Nuclear Data Uncertainty Propagation for Fusion Design , 2011 .

[115]  Philip R. Page,et al.  ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology , 2006 .

[116]  A. H. Wapstra,et al.  The AME2003 atomic mass evaluation . (II). Tables, graphs and references , 2003 .

[117]  M. W. Herman,et al.  Fission of light actinides:Th232(n,f) andPa231(n,f) reactions , 2006 .

[118]  C. Kalbach,et al.  Preequilibrium reactions with complex particle channels , 2005 .

[119]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[120]  Arjan J. Koning,et al.  Global and local level density models , 2008 .

[121]  Stéphane Goriely,et al.  A Hartree-Fock Nuclear Mass Table , 2001 .

[122]  France,et al.  Photodisintegration of ultra-high-energy cosmic rays revisited , 2004, astro-ph/0412109.

[123]  M. Herman,et al.  Assessment of Approximate Methods for Width Fluctuation Corrections , 2005 .

[124]  Stéphane Goriely,et al.  The isovector imaginary neutron potential: A key ingredient for the r-process nucleosynthesis , 2007 .

[125]  Stéphane Hilaire,et al.  Evaluation of the covariance matrix of neutronic cross sections with the Backward-Forward Monte Carlo method , 2007 .