Orbitally Induced Climate and Geochemical Variability Across the Oligocene/Miocene Boundary

To assess the influence of orbital-scale variations on late Oligocene to early Miocene climate and ocean chemistry, high-resolution (∼5 kyr) benthic foraminiferal carbon and oxygen isotope and percent coarse fraction time series were constructed for Ocean Drilling Program site 929 on Ceara Rise in the western equatorial Atlantic. These time series exhibit pervasive low- to high-frequency variability across a 5-Myr interval (20.5–25.4 Ma). The records also reveal several large-scale secular variations including two positive (∼1.6‰) oxygen isotope excursions at 22.95 and 21.1 Ma, suggestive of large but brief glacial maxima (Mi-1 and Mi-1a events of Miller et al. [1991]), and a long-term cyclical increase in the carbon isotopic composition of seawater (shift of ∼1.52‰) that reaches a maximum coincident with peak δ18O values at 22.95 Ma. Lower-resolution (∼25 kyr) records constructed from benthic and planktonic foraminifera as well as bulk carbonate at a shallower site on Ceara Rise (site 926) for the period 21.7–24.9 Ma covary with site 929 δ18O values reflecting changes in Antarctic ice-volume. Likewise, covariance among carbon isotopic records of bulk sediment, benthic, and planktonic foraminifera suggest that the low-frequency cycles (∼400 kyr) and long-term increase in δ13C values represent changes in the mean carbon composition of seawater ΣCO2. The time series presented here constitute the longest, most continuous, and highest-resolution records of pre-Pliocene climate and oceanography to date. The site 929 carbon and oxygen isotope power spectra show significant concentrations of variance at ∼400, 100, and 41 kyr, demonstrating that orbitally induced oscillations have been a normal characteristic of the global climate system since at least the Oligocene, including periods of equable climate and times with no apparent Northern Component Water production.

[1]  N. Pisias,et al.  Stable Isotope and Calcium Carbonate Records from Hydraulic Piston Cored Hole 574A: High-Resolution Records from the Middle Miocene , 1985 .

[2]  Marie-Pierre Aubry,et al.  A revised Cenozoic geochronology and chronostratigraphy , 1995 .

[3]  P. Pearson,et al.  29. MULTISPECIES PLANKTONIC FORAMINIFER STABLE ISOTOPE STRATIGRAPHY THROUGH OLIGOCENE/MIOCENE BOUNDARY CLIMATIC CYCLES, SITE 926 1 , 1997 .

[4]  R. Fairbanks,et al.  Variability in the deep and intermediate water circulation of the Atlantic Ocean during the past 25,000 years: Northern Hemisphere modulation of the Southern Ocean , 1987 .

[5]  N. Opdyke,et al.  Oxygen-Isotope and Paleomagnetic Stratigraphy of Pacific Core V28-239 Late Pliocene to Latest Pleistocene , 1976 .

[6]  Isabella Raffi,et al.  Astronomical calibration age for the Oligocene-Miocene boundary , 2000 .

[7]  P. Pearson,et al.  5. THE OLIGOCENE TIME SCALE AND CYCLOSTRATIGRAPHY ON THE CEARA RISE, WESTERN EQUATORIAL ATLANTIC 1 , 1997 .

[8]  K. Miller,et al.  45. MIOCENE STABLE ISOTOPE STRATIGRAPHY, SITE 747, KERGUELEN PLATEAU1 , 1992 .

[9]  J. Laskar,et al.  Stability of the Astronomical Frequencies Over the Earth's History for Paleoclimate Studies , 1992, Science.

[10]  S. Savin,et al.  Miocene deepwater oceanography , 1989 .

[11]  J. Hayes,et al.  Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. , 1992, Global biogeochemical cycles.

[12]  J. Zachos,et al.  28. MILANKOVITCH-SCALE CLIMATE VARIABILITY RECORDED NEAR THE OLIGOCENE/MIOCENE BOUNDARY 1 , 1997 .

[13]  R. Fairbanks,et al.  Early and Middle Miocene stable isotopes: Implications for Deepwater circulation and climate , 1992 .

[14]  Jan Backman,et al.  Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean , 1989 .

[15]  B. Haq,et al.  Chronology of Fluctuating Sea Levels Since the Triassic , 1987, Science.

[16]  Michael A. Arthur,et al.  Miocene evolution of atmospheric carbon dioxide , 1999 .

[17]  C. Frohlich,et al.  Orbital forcing of global change throughout the Phanerozoic: A possible stratigraphic solution to the eccentricity phase problem , 1997 .

[18]  J. Laskar,et al.  Orbital, precessional, and insolation quantities for the earth from -20 Myr to +10 Myr. , 1993 .

[19]  D. Hodell,et al.  Variations in the strontium isotopic ratio of seawater during the Miocene: Stratigraphic and geochemical implications , 1994 .

[20]  R. Fairbanks,et al.  Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion , 1987 .

[21]  J. Duplessy,et al.  Changes in the distribution of δ13C of deep water ΣCO2 between the Last Glaciation and the Holocene , 1988 .

[22]  R. Leckie,et al.  Late Paleogene and Early Neogene Foraminifers of Deep Sea Drilling Project Site 270, Ross Sea, Antarctica , 1986 .

[23]  J. Zachos,et al.  Latest Oligocene through early Miocene isotopic stratigraphy and deep-water paleoceanography of the western equatorial Atlantic : Sites 926 and 929 , 1997 .

[24]  J. Duplessy,et al.  Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years , 1987, Nature.

[25]  J. Laskar,et al.  Astronomical calibration of Oligocene--Miocene time , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  B. Flower,et al.  Middle Miocene ocean-climate transition: High resolution oxygen and carbon isotopic records from Dee , 1993 .

[27]  Christoph Hemleben,et al.  Modern Planktonic Foraminifera , 1988, Springer New York.

[28]  N. Shackleton The carbon isotope record of the Cenozoic: history of organic carbon burial and of oxygen in the ocean and atmosphere , 1987, Geological Society, London, Special Publications.

[29]  J. Imbrie,et al.  Oceanic Response to Orbital Forcing in the Late Quaternary: Observational and Experimental Strategies , 1989 .

[30]  A. Mix,et al.  Aliasing of the geologic record and the search for long‐period Milankovitch cycles , 1988 .

[31]  N. Shackleton Carbon-13 in Uvigerina: Tropical Rainforest History and the Equatorial Pacific Carbonate Dissolution Cycles , 1977 .

[32]  André Berger,et al.  On the Structure and Origin of Major Glaciation Cycles .2. the 100,000-year Cycle , 1993 .

[33]  Rial Pacemaking the ice ages by frequency modulation of Earth's orbital eccentricity , 1999, Science.

[34]  L. Lourens,et al.  Long-periodic variations in the earth's obliquity and their relation to third-order eustatic cycles and late Neogene glaciations , 1997 .

[35]  N. Shackleton,et al.  3. SEDIMENT FLUXES BASED ON AN ORBITALLY TUNED TIME SCALE 5 MA TO 14 MA, SITE 926 1 , 1997 .

[36]  S. Savin,et al.  Mid‐Miocene isotope stratigraphy in the deep sea: High‐resolution correlations, paleoclimatic cycles, and sediment preservation , 1991 .

[37]  D. G. Watts,et al.  Spectral analysis and its applications , 1968 .

[38]  André Berger,et al.  Insolation values for the climate of the last 10 , 1991 .

[39]  Maureen E. Raymo,et al.  Matuyama 41,000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets , 1986 .

[40]  James C. Zachos,et al.  Orbitally paced climate oscillations across the Oligocene/Miocene boundary , 1997, Nature.

[41]  Kirk A. Maasch,et al.  Plio-Pleistocene time evolution of the 100-kyr cycle in marine paleoclimate records , 1992 .

[42]  F. Hilgen Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the Geomagnetic Polarity Time Scale , 1991 .

[43]  K. Miller,et al.  Drilling and Dating New Jersey Oligocene-Miocene Sequences: Ice Volume, Global Sea Level, and Exxon Records , 1996, Science.

[44]  J. Kennett Cenozoic evolution of Antarctic glaciation the Circum-Antarctic Ocean and their impact on global paleoceanography , 1977 .

[45]  James D. Wright,et al.  Unlocking the Ice House: Oligocene‐Miocene oxygen isotopes, eustasy, and margin erosion , 1991 .

[46]  S. Cande,et al.  Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic , 1995 .

[47]  A. Bé An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera , 1977 .

[48]  Karen A. Salamy,et al.  High‐resolution (104 years) deep‐sea foraminiferal stable isotope records of the Eocene‐Oligocene climate transition , 1996 .

[49]  R. Fairbanks,et al.  The Marine Oxygen Isotope Record in Pleistocene Coral, Barbados, West Indies , 1978, Quaternary Research.

[50]  D. Mallinson,et al.  Origin and age of phosphorite from the south-central Florida Platform: Relation of phosphogenesis to sea-level fluctuations and δ13C excursions , 1993 .

[51]  R. Fairbanks,et al.  Oligocene to Miocene Carbon Isotope Cycles and Abyssal Circulation Changes , 2013 .

[52]  Nicholas J Shackleton,et al.  Oxygen Isotope and Palaeomagnetic Stratigraphy of Equatorial Pacific Core V28-238: Oxygen Isotope Temperatures and Ice Volumes on a 105 Year and 106 Year Scale , 1973, Quaternary Research.

[53]  J. LaBrecque,et al.  Oligocene paleoceanography of the South Atlantic: paleoclimatic implications of sediment accumulation rates and magnetic susceptibility measurements , 1986 .

[54]  John Z. Imbrie,et al.  Modeling the Climatic Response to Orbital Variations , 1980, Science.

[55]  J. D. Hays,et al.  Variations in the Earth ' s Orbit : Pacemaker of the Ice Ages Author ( s ) : , 2022 .