NiO resistive random access memory nanocapacitor array on graphene.
暂无分享,去创建一个
Jong Yeog Son | H. M. Jang | J. Son | Y. Shin | Young-Han Shin | Hyungjun Kim | Hyun M Jang | Hyungjun Kim | H. Jang
[1] H. Koinuma,et al. Atomic Control of the SrTiO3 Crystal Surface , 1994, Science.
[2] H. Kuwahara,et al. Current switching of resistive states in magnetoresistive manganites , 1997, Nature.
[3] J. F. Stoddart,et al. A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .
[4] C. Lokhande,et al. Chemical deposition method for metal chalcogenide thin films , 2000 .
[5] C. Gerber,et al. Reproducible switching effect in thin oxide films for memory applications , 2000 .
[6] C. Gerber,et al. Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals , 2001 .
[7] R. G. Freeman,et al. Submicrometer metallic barcodes. , 2001, Science.
[8] T. Venkatesan,et al. Interface Characterization of All-Perovskite Oxide Field Effect Heterostructures , 2002 .
[9] S. Okhonin,et al. A capacitor-less 1T-DRAM cell , 2002, IEEE Electron Device Letters.
[10] Christian Teichert,et al. Self-organization of nanostructures in semiconductor heteroepitaxy , 2002 .
[11] Shoso Shingubara,et al. Fabrication of Nanomaterials Using Porous Alumina Templates , 2003 .
[12] Lars Samuelson,et al. Self-forming nanoscale devices , 2003 .
[13] Younan Xia,et al. One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .
[14] Charles R. Szmanda,et al. Programmable polymer thin film and non-volatile memory device , 2004, Nature materials.
[15] A. Geim,et al. Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.
[16] First principles study of work functions of single wall carbon nanotubes. , 2005, Physical review letters.
[17] Roberto Bez,et al. Innovative technologies for high density non-volatile semiconductor memories , 2005 .
[18] S. Seo,et al. Electrode dependence of resistance switching in polycrystalline NiO films , 2005 .
[19] K. Kern,et al. Engineering atomic and molecular nanostructures at surfaces , 2005, Nature.
[20] R. Waser,et al. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.
[21] 이전국,et al. Influence of oxygen content on electrical properties of NiO films grown by rf reactive sputtering for resistive random-access memory applications , 2006 .
[22] Kornelius Nielsch,et al. Fast fabrication of long-range ordered porous alumina membranes by hard anodization , 2006, Nature materials.
[23] Andre K. Geim,et al. Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.
[24] Bonnie A. Sheriff,et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.
[25] S. H. Jeon,et al. A Low‐Temperature‐Grown Oxide Diode as a New Switch Element for High‐Density, Nonvolatile Memories , 2007 .
[26] Jong Yeog Son,et al. Direct observation of conducting filaments on resistive switching of NiO thin films , 2008 .
[27] M. Kozicki,et al. Low current resistive switching in Cu–SiO2 cells , 2008 .
[28] Rainer Waser,et al. Realization of regular arrays of nanoscale resistive switching blocks in thin films of Nb-doped SrTiO3 , 2008 .
[29] Y. Shin,et al. Bistable resistive states of amorphous SrRuO3 thin films , 2008 .
[30] H. Dai,et al. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors , 2008, Science.
[31] Martin Steinhart,et al. Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. , 2008, Nature nanotechnology.
[32] Frederick T. Chen,et al. Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications , 2008 .
[33] Qi Liu,et al. On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt , 2008 .
[34] Kwang S. Kim,et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.