NiO resistive random access memory nanocapacitor array on graphene.

In this study, a NiO RRAM nanocapacitor array was fabricated on a graphene sheet, which was on a Nb-doped SrTiO(3) substrate containing terraces with a regular interval of about 100 nm and an atomically smooth surface. For the formation of the NiO RRAM nanocapacitor (Pt/NiO/graphene capacitor) array, an anodic aluminum oxide (AAO) nanotemplate with a pore diameter of about 30 nm and an interpore distance of about 100 nm was used. NiO and Pt were subsequently deposited on the graphene sheet. The NiO RRAM nanocapacitor had a diameter of about 30 +/- 2 nm and a thickness of about 33 +/- 3 nm. Typical unipolar switching characteristics of the NiO RRAM nanocapacitor array were confirmed. The NiO RRAM nanocapacitor array on graphene exhibited lower SET and RESET voltages than that on a bare surface of Nb-doped SrTiO(3).

[1]  H. Koinuma,et al.  Atomic Control of the SrTiO3 Crystal Surface , 1994, Science.

[2]  H. Kuwahara,et al.  Current switching of resistive states in magnetoresistive manganites , 1997, Nature.

[3]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[4]  C. Lokhande,et al.  Chemical deposition method for metal chalcogenide thin films , 2000 .

[5]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[6]  C. Gerber,et al.  Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals , 2001 .

[7]  R. G. Freeman,et al.  Submicrometer metallic barcodes. , 2001, Science.

[8]  T. Venkatesan,et al.  Interface Characterization of All-Perovskite Oxide Field Effect Heterostructures , 2002 .

[9]  S. Okhonin,et al.  A capacitor-less 1T-DRAM cell , 2002, IEEE Electron Device Letters.

[10]  Christian Teichert,et al.  Self-organization of nanostructures in semiconductor heteroepitaxy , 2002 .

[11]  Shoso Shingubara,et al.  Fabrication of Nanomaterials Using Porous Alumina Templates , 2003 .

[12]  Lars Samuelson,et al.  Self-forming nanoscale devices , 2003 .

[13]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[14]  Charles R. Szmanda,et al.  Programmable polymer thin film and non-volatile memory device , 2004, Nature materials.

[15]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[16]  First principles study of work functions of single wall carbon nanotubes. , 2005, Physical review letters.

[17]  Roberto Bez,et al.  Innovative technologies for high density non-volatile semiconductor memories , 2005 .

[18]  S. Seo,et al.  Electrode dependence of resistance switching in polycrystalline NiO films , 2005 .

[19]  K. Kern,et al.  Engineering atomic and molecular nanostructures at surfaces , 2005, Nature.

[20]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[21]  이전국,et al.  Influence of oxygen content on electrical properties of NiO films grown by rf reactive sputtering for resistive random-access memory applications , 2006 .

[22]  Kornelius Nielsch,et al.  Fast fabrication of long-range ordered porous alumina membranes by hard anodization , 2006, Nature materials.

[23]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[24]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[25]  S. H. Jeon,et al.  A Low‐Temperature‐Grown Oxide Diode as a New Switch Element for High‐Density, Nonvolatile Memories , 2007 .

[26]  Jong Yeog Son,et al.  Direct observation of conducting filaments on resistive switching of NiO thin films , 2008 .

[27]  M. Kozicki,et al.  Low current resistive switching in Cu–SiO2 cells , 2008 .

[28]  Rainer Waser,et al.  Realization of regular arrays of nanoscale resistive switching blocks in thin films of Nb-doped SrTiO3 , 2008 .

[29]  Y. Shin,et al.  Bistable resistive states of amorphous SrRuO3 thin films , 2008 .

[30]  H. Dai,et al.  Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors , 2008, Science.

[31]  Martin Steinhart,et al.  Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. , 2008, Nature nanotechnology.

[32]  Frederick T. Chen,et al.  Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications , 2008 .

[33]  Qi Liu,et al.  On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt , 2008 .

[34]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.