PROBING THE ULTRAVIOLET LUMINOSITY FUNCTION OF THE EARLIEST GALAXIES WITH THE RENAISSANCE SIMULATIONS

In this paper, we present the first results from the Renaissance Simulations, a suite of extremely high-resolution and physics-rich AMR calculations of high-redshift galaxy formation performed on the Blue Waters supercomputer. These simulations contain hundreds of well-resolved galaxies at z ∼ 25 – 8 ?> , and make several novel, testable predictions. Most critically, we show that the ultraviolet luminosity function of our simulated galaxies is consistent with observations of high-z galaxy populations at the bright end of the luminosity function ( M 1600 ≤ − 17 ) ?> , but at lower luminosities is essentially flat rather than rising steeply, as has been inferred by Schechter function fits to high-z observations, and has a clearly defined lower limit in UV luminosity. This behavior of the luminosity function is due to two factors: (i) the strong dependence of the star formation rate (SFR) on halo virial mass in our simulated galaxy population, with lower-mass halos having systematically lower SFRs and thus lower UV luminosities; and (ii) the fact that halos with virial masses below ≃ 2 × 10 8 ?> M ⊙ ?> do not universally contain stars, with the fraction of halos containing stars dropping to zero at ≃ 7 × 10 6 ?> M ⊙ ?> . Finally, we show that the brightest of our simulated galaxies may be visible to current and future ultra-deep space-based surveys, particularly if lensed regions are chosen for observation.

[1]  M. Oguri,et al.  HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5–10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION , 2014, 1408.6903.

[2]  J. Kneib,et al.  NEW CONSTRAINTS ON THE FAINT END OF THE UV LUMINOSITY FUNCTION AT z ∼ 7–8 USING THE GRAVITATIONAL LENSING OF THE HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2014, 1409.0512.

[3]  B. O’Shea,et al.  SCALING RELATIONS FOR GALAXIES PRIOR TO REIONIZATION , 2014, 1408.2523.

[4]  R. Cen,et al.  ESCAPE FRACTION OF IONIZING PHOTONS DURING REIONIZATION: EFFECTS DUE TO SUPERNOVA FEEDBACK AND RUNAWAY OB STARS , 2014, 1405.0552.

[5]  B. O’Shea,et al.  HEATING THE INTERGALACTIC MEDIUM BY X-RAYS FROM POPULATION III BINARIES IN HIGH-REDSHIFT GALAXIES , 2014, 1404.6555.

[6]  M. Norman,et al.  The birth of a galaxy – III. Propelling reionization with the faintest galaxies , 2014, 1403.6123.

[7]  M. Franx,et al.  UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.

[8]  H Germany,et al.  On the evolution of the cosmic ionizing background , 2013, 1312.0615.

[9]  M. Norman,et al.  FULLY COUPLED SIMULATION OF COSMIC REIONIZATION. II. RECOMBINATIONS, CLUMPING FACTORS, AND THE PHOTON BUDGET FOR REIONIZATION , 2013, 1311.2152.

[10]  P. Hopkins,et al.  Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation , 2013, 1311.2073.

[11]  B. O’Shea,et al.  POPULATION III STAR FORMATION IN LARGE COSMOLOGICAL VOLUMES. I. HALO TEMPORAL AND PHYSICAL ENVIRONMENT , 2013, 1306.4679.

[12]  M. Norman,et al.  POPULATION III STARS AND REMNANTS IN HIGH-REDSHIFT GALAXIES , 2013, 1305.1325.

[13]  K. Nagamine,et al.  IMPACT OF H2-BASED STAR FORMATION MODEL ON THE z ⩾ 6 LUMINOSITY FUNCTION AND THE IONIZING PHOTON BUDGET FOR REIONIZATION , 2013, 1301.5270.

[14]  Michele Cirasuolo,et al.  THE 2012 HUBBLE ULTRA DEEP FIELD (UDF12): OBSERVATIONAL OVERVIEW , 2012, 1212.1448.

[15]  S. Khochfar,et al.  The First Billion Years project: proto-galaxies reionizing the universe , 2012, 1211.1670.

[16]  R. Massey,et al.  Extragalactic number counts at 100 μm, free from cosmic variance , 2012, 1211.0007.

[17]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[18]  M. Norman,et al.  The birth of a galaxy – II. The role of radiation pressure , 2012, 1206.1043.

[19]  Alan W. McConnachie,et al.  THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.

[20]  Oliver Hahn,et al.  Multi-scale initial conditions for cosmological simulations , 2011, 1103.6031.

[21]  M. Norman,et al.  THE BIRTH OF A GALAXY: PRIMORDIAL METAL ENRICHMENT AND STELLAR POPULATIONS , 2010, 1011.2632.

[22]  H. Rix,et al.  A COSMIC VARIANCE COOKBOOK , 2010, 1001.1737.

[23]  T. Abel,et al.  enzo+moray: radiation hydrodynamics adaptive mesh refinement simulations with adaptive ray tracing , 2010, 1012.2865.

[24]  M. Norman,et al.  yt: A MULTI-CODE ANALYSIS TOOLKIT FOR ASTROPHYSICAL SIMULATION DATA , 2010, 1011.3514.

[25]  R. Ellis,et al.  Early star-forming galaxies and the reionization of the Universe , 2010, Nature.

[26]  F. Ozel,et al.  The late reionization of filaments , 2009, 0908.1576.

[27]  Matthew J. Turk,et al.  The Formation of Population III Binaries from Cosmological Initial Conditions , 2009, Science.

[28]  B. O’Shea,et al.  THREE MODES OF METAL-ENRICHED STAR FORMATION IN THE EARLY UNIVERSE , 2008, 0806.1653.

[29]  H. Trac,et al.  Imprint of Inhomogeneous Hydrogen Reionization on the Temperature Distribution of the Intergalactic Medium , 2008, 0807.4530.

[30]  Liang Gao,et al.  Mass loss of galaxies due to an ultraviolet background , 2008, 0806.0378.

[31]  M. Stiavelli,et al.  Cosmic Variance and Its Effect on the Luminosity Function Determination in Deep High-z Surveys , 2007, 0712.0398.

[32]  T. Greif,et al.  Occurrence of metal-free galaxies in the early Universe , 2007, 0711.4622.

[33]  NasaGsfc,et al.  How Very Massive Metal-Free Stars Start Cosmological Reionization , 2007, 0710.4328.

[34]  B. O’Shea,et al.  Population III Star Formation in a ΛCDM Universe. II. Effects of a Photodissociating Background , 2007, 0706.4416.

[35]  B. O’Shea,et al.  Population III Star Formation in a ΛCDM Universe. I. The Effect of Formation Redshift and Environment on Protostellar Accretion Rate , 2006, astro-ph/0607013.

[36]  Michael S. Warren,et al.  Precision Determination of the Mass Function of Dark Matter Halos , 2005, astro-ph/0506395.

[37]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[38]  Massimo Stiavelli,et al.  The Hubble Ultra Deep Field , 2003, astro-ph/0607632.

[39]  Michael L. Norman,et al.  The Formation of the First Star in the Universe , 2001, Science.

[40]  N. Gnedin Effect of Reionization on Structure Formation in the Universe , 2000, astro-ph/0002151.

[41]  L. Hui,et al.  Probing the Universe with the Lyα forest — I. Hydrodynamics of the low-density intergalactic medium , 1997, astro-ph/9706219.

[42]  M. Norman,et al.  Modeling primordial gas in numerical cosmology , 1996, astro-ph/9608040.