Lower Bounds for Total Storage of Multiset Combinatorial Batch Codes Using Linear Programming

The class of multiset combinatorial batch codes (MCBCs) was introduced by Zhang et al. (2018) as a generalization of combinatorial batch codes (CBCs), which are replication-based batch codes. The MCBCs allow multiple users to retrieve items in parallel in a distributed storage and a fundamental objective in this study is to determine the minimum total storage given certain requirements. We formulate linear programs so that the optimal solutions provide lower bounds on the total storage of MCBCs. Borrowing techniques from linear programming, we improve known lower bounds in some cases. Furthermore, for some parameters, we showed that these lower bounds are either tight or asymptotically tight by constructing the corresponding codes.

[1]  Yuval Ishai,et al.  Compressing Vector OLE , 2018, CCS.

[2]  Jingjun Bao,et al.  The completion determination of optimal $$(3,4)$$(3,4)-packings , 2015, Des. Codes Cryptogr..

[3]  Natalia Silberstein Fractional Repetition and Erasure Batch Codes , 2014, ICMCTA.

[4]  Rafail Ostrovsky,et al.  Batch codes and their applications , 2004, STOC '04.

[5]  Carl Mummert,et al.  On erasure combinatorial batch codes , 2018, Adv. Math. Commun..

[6]  Csilla Bujtás,et al.  Relaxations of Hall's condition: Optimal batch codes with multiple queries , 2012 .

[7]  Douglas R. Stinson,et al.  Combinatorial batch codes , 2009, Adv. Math. Commun..

[8]  Csilla Bujtás,et al.  Optimal combinatorial batch codes derived from dual systems , 2011 .

[9]  Sushmita Ruj,et al.  Combinatorial batch codes: A lower bound and optimal constructions , 2012, Adv. Math. Commun..

[10]  Eitan Yaakobi,et al.  Multiset combinatorial batch codes , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[11]  Alexandros G. Dimakis,et al.  Batch codes through dense graphs without short cycles , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[12]  Ori Rottenstreich,et al.  Designing Optimal Middlebox Recovery Schemes with Performance Guarantees , 2018, IEEE INFOCOM 2018 - IEEE Conference on Computer Communications.

[13]  N. J. A. Sloane,et al.  A new table of constant weight codes , 1990, IEEE Trans. Inf. Theory.

[14]  Hui Zhang,et al.  Bounds for batch codes with restricted query size , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[15]  Paul H. Siegel,et al.  Consecutive switch codes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[16]  Shu-Tao Xia,et al.  Binary Constant-Weight Codes for Error Detection , 1998, IEEE Trans. Inf. Theory.

[17]  Dongdong Jia,et al.  Erasure combinatorial batch codes based on nonadaptive group testing , 2018, Des. Codes Cryptogr..

[18]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[19]  Jehoshua Bruck,et al.  Switch Codes: Codes for Fully Parallel Reconstruction , 2017, IEEE Transactions on Information Theory.

[20]  Natalia Silberstein,et al.  Optimal Fractional Repetition Codes Based on Graphs and Designs , 2014, IEEE Transactions on Information Theory.

[21]  Eitan Yaakobi,et al.  Constructions of batch codes with near-optimal redundancy , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[22]  Eitan Yaakobi,et al.  Nearly optimal constructions of PIR and batch codes , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[23]  Natalia Silberstein,et al.  Optimal combinatorial batch codes based on block designs , 2016, Des. Codes Cryptogr..

[24]  Csilla Bujtás,et al.  Optimal batch codes: Many items or low retrieval requirement , 2011, Adv. Math. Commun..

[25]  Csilla Bujtás,et al.  Turán numbers and batch codes , 2013, Discret. Appl. Math..

[26]  Richard A. Brualdi,et al.  Combinatorial batch codes and transversal matroids , 2010, Adv. Math. Commun..

[27]  Selmer M. Johnson A new upper bound for error-correcting codes , 1962, IRE Trans. Inf. Theory.

[28]  Niranjan Balachandran,et al.  On an extremal hypergraph problem related to combinatorial batch codes , 2012, Discret. Appl. Math..