Microporous activated carbon aerogels via a simple subcritical drying route for CO2 capture and hydrogen storage

Abstract The successful synthesis of carbon aerogels, via a simple subcritical drying route and subsequent activation to high surface area carbons with attractive properties for gas storage is demonstrated. The route generates highly microporous carbon aerogel with a surface area of 508 m 2 /g and pore volume of 0.68 cm 3 /g wherein micropores account for 80% (407 m 2 /g) of surface area. The carbon aerogel is dominated by micropores of size 2 /g and pore volume up to 2.03 cm 3 /g. Activation at 600, 700 or 800 °C (and KOH carbon ratio of 2, 4 or 5) yields activated carbon aerogels with micropore size distribution centred at ca. 8 and 13 A (i.e., similar to that of the starting carbon aerogel) but with a large increase in pore volume arising from the micropores with the effect that pores of size 2 uptake of 2.7–3.0 mmol/g at 25 °C and 1 bar, and store between 3.5 and 4.3 wt% hydrogen at −196 °C and 20 bar. The hydrogen storage density of the carbons is high (up to 16.2 μmol H 2  m −2 ) with small micropores favouring high density.

[1]  I. Cabria,et al.  The optimum average nanopore size for hydrogen storage in carbon nanoporous materials , 2007 .

[2]  J. Fierro,et al.  Study of chemical activation process of a lignocellulosic material with KOH by XPS and XRD , 2003 .

[3]  R. Pekala,et al.  Structure of organic aerogels. 1. Morphology and scaling , 1993 .

[4]  Dolores Lozano-Castelló,et al.  Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures , 2007 .

[5]  Hua Ma,et al.  Preparation and gas storage of high surface area microporous carbon derived from biomass source cornstalks. , 2008, Bioresource technology.

[6]  R. Mokaya,et al.  A simplified synthesis of N-doped zeolite-templated carbons, the control of the level of zeolite-like ordering and its effect on hydrogen storage properties , 2011 .

[7]  F. J. Maldonado-Hódar,et al.  On the micro- and mesoporosity of carbon aerogels and xerogels. The role of the drying conditions during the synthesis processes , 2012 .

[8]  M. Meyyappan,et al.  Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. , 2012, Chemical communications.

[9]  P. T. Moseley,et al.  Hydrogen storage by carbon materials , 2006 .

[10]  Wen‐Cui Li,et al.  Novel porous solids for carbon dioxide capture , 2011 .

[11]  Peter Hall,et al.  Preparation of controlled porosity carbon-aerogels for energy storage in rechargeable lithium oxygen batteries , 2009 .

[12]  R. Mokaya,et al.  Characterisation and hydrogen storage of Pt-doped carbons templated by Pt-exchanged zeolite Y , 2011 .

[13]  Nathalie Job,et al.  Porous carbon xerogels with texture tailored by pH control during sol–gel process , 2004 .

[14]  Yury Gogotsi,et al.  Effect of pore size on carbon dioxide sorption by carbide derived carbon , 2011 .

[15]  Shuqin Song,et al.  Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3 , 2007 .

[16]  F. Rodríguez-Reinoso,et al.  Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon , 1996 .

[17]  H. Tian,et al.  Preparation, microstructure and hydrogen sorption properties of nanoporous carbon aerogels under ambient drying , 2008, Nanotechnology.

[18]  H. Tamon,et al.  Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors , 2000 .

[19]  M. Sevilla,et al.  Activation of carbide-derived carbons: a route to materials with enhanced gas and energy storage properties , 2011 .

[20]  K. D. de Jong,et al.  Hydrogen storage using physisorption – materials demands , 2001 .

[21]  R. Mokaya,et al.  The effect of Al content of zeolite template on the properties and hydrogen storage capacity of zeolite templated carbons , 2011 .

[22]  T. Baumann,et al.  High surface area carbon aerogel monoliths with hierarchical porosity , 2008 .

[23]  R. Mokaya,et al.  Evolution of optimal porosity for improved hydrogen storage in templated zeolite-like carbons , 2010 .

[24]  Hongwei Yang,et al.  Nitrogen-enriched carbonaceous materials with hierarchical micro-mesopore structures for efficient CO2 capture , 2012 .

[25]  Antonio B. Fuertes,et al.  Sustainable porous carbons with a superior performance for CO2 capture , 2011 .

[26]  M. Dresselhaus,et al.  Formation of graphitic structures in cobalt- and nickel-doped carbon aerogels. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[27]  James A. Ritter,et al.  Preparation and Properties of Resorcinol–Formaldehyde Organic and Carbon Gels , 2003 .

[28]  R. Pekala,et al.  Organic aerogels from the polycondensation of resorcinol with formaldehyde , 1989 .

[29]  Li Zhao,et al.  Carbon dioxide capture on amine-rich carbonaceous materials derived from glucose. , 2010, ChemSusChem.

[30]  R. Mokaya,et al.  Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition: effect of the zeolite template and nitrogen doping. , 2006, The journal of physical chemistry. B.

[31]  C. Arean,et al.  Post-synthesis modifications of SBA-15 carbon replicas: improving hydrogen storage by increasing microporous volume , 2008 .

[32]  Richard Chahine,et al.  Hydrogen adsorption in carbon nanostructures , 2001 .

[33]  Qiang Wang,et al.  CO2 capture by solid adsorbents and their applications: current status and new trends , 2011 .

[34]  Zifeng Yan,et al.  Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction , 2012 .

[35]  R. Mokaya,et al.  Superior CO2 Adsorption Capacity on N‐doped, High‐Surface‐Area, Microporous Carbons Templated from Zeolite , 2011 .

[36]  Joaquín Silvestre-Albero,et al.  High-surface-area carbon molecular sieves for selective CO(2) adsorption. , 2010, ChemSusChem.

[37]  T. Baumann,et al.  Toward New Candidates for Hydrogen Storage: High-Surface-Area Carbon Aerogels , 2006 .

[38]  M. Dresselhaus,et al.  Preparation of low-density carbon aerogels by ambient pressure drying , 2004 .

[39]  Wen‐Cui Li,et al.  Preparation of cresol–formaldehyde carbon aerogels via drying aquagel at ambient pressure , 2006 .

[40]  Antonio B. Fuertes,et al.  Ultrahigh surface area polypyrrole-based carbons with superior performance for hydrogen storage , 2011 .

[41]  R. Pekala,et al.  Carbon Aerogels and Xerogels , 1992 .

[42]  Wenzhong Shen,et al.  Yeast-based microporous carbon materials for carbon dioxide capture. , 2012, ChemSusChem.

[43]  A. B. Fuertes,et al.  Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from p , 2011 .

[44]  Bruce Dunn,et al.  Carbon aerogels for electrochemical applications , 1998 .

[45]  Robin J. White,et al.  Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage , 2012 .

[46]  Covadonga Pevida,et al.  Silica-templated melamine–formaldehyde resin derived adsorbents for CO2 capture , 2008 .

[47]  James A. Ritter,et al.  Effect of synthesis pH on the structure of carbon xerogels , 1997 .

[48]  P. Wheatley,et al.  Gas storage in nanoporous materials. , 2008, Angewandte Chemie.

[49]  R. Mokaya,et al.  Templated nanoscale porous carbons. , 2010, Nanoscale.

[50]  S. Blacher,et al.  Texture control of freeze-dried resorcinol–formaldehyde gels , 1998 .

[51]  Wen‐Cui Li,et al.  Rapid Synthesis of Nitrogen‐Doped Porous Carbon Monolith for CO2 Capture , 2010, Advanced materials.

[52]  R. Mokaya,et al.  CVD Nanocasting Routes to Zeolite‐Templated Carbons for Hydrogen Storage , 2010 .

[53]  J. Rouzaud,et al.  Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials , 2005 .

[54]  James A. Ritter,et al.  Carbonization and activation of sol–gel derived carbon xerogels , 2000 .

[55]  M. Sevilla,et al.  Enhancement of Hydrogen Storage Capacity of Zeolite-Templated Carbons by Chemical Activation , 2010 .

[56]  R. Mokaya,et al.  Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping. , 2009, Journal of the American Chemical Society.

[57]  R. Mokaya,et al.  Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework , 2012 .

[58]  Juan Hu,et al.  High hydrogen storage capacity of porous carbons prepared by using activated carbon. , 2009, Journal of the American Chemical Society.

[59]  A. B. Fuertes,et al.  High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials , 2011 .

[60]  T. Truong,et al.  CO2 adsorption on carbonaceous surfaces: a combined experimental and theoretical study , 2003 .

[61]  M. Sevilla,et al.  Superactivated carbide-derived carbons with high hydrogen storage capacity , 2010 .

[62]  Y. Gogotsi,et al.  Importance of pore size in high-pressure hydrogen storage by porous carbons , 2009 .

[63]  F. Carrasco-Marín,et al.  Preparation, surface characteristics, and electrochemical double-layer capacitance of KOH-activated carbon aerogels and their O- and N-doped derivatives , 2012 .

[64]  J. Dentzer,et al.  Hydrogen storage in activated carbon materials: Role of the nanoporous texture , 2004 .

[65]  S. Bhatia,et al.  Optimum conditions for adsorptive storage. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[66]  Gang Yu,et al.  Granular bamboo-derived activated carbon for high CO(2) adsorption: the dominant role of narrow micropores. , 2012, ChemSusChem.

[67]  Antonio B. Fuertes,et al.  N‐Doped Polypyrrole‐Based Porous Carbons for CO2 Capture , 2011 .

[68]  K. Han,et al.  Efficient CO(2) capture by porous, nitrogen-doped carbonaceous adsorbents derived from task-specific ionic liquids. , 2012, ChemSusChem.

[69]  R. Mokaya,et al.  Ordered Mesoporous Carbon Monoliths: CVD Nanocasting and Hydrogen Storage Properties , 2007 .

[70]  R. Mokaya,et al.  Synthesis and High Hydrogen Storage Capacity of Zeolite-Like Carbons Nanocast Using As-Synthesized Zeolite Templates , 2008 .

[71]  M. Endo,et al.  Hydrophilicity-controlled carbon aerogels with high mesoporosity. , 2009, Journal of the American Chemical Society.