All the Brazil nuts are not on top: Vibration induced granular size segregation of binary, ternary and multi-sized mixtures

[1]  C. Hrenya,et al.  Axial segregation in bubbling gas-fluidized beds with Gaussian and lognormal distributions of Geldart Group B particles , 2010 .

[2]  Benjamin J. Glasser,et al.  Experiments and simulations of cohesionless particles with varying roughness in a bladed mixer , 2010 .

[3]  Benjamin J. Glasser,et al.  Discrete element simulation of free flowing grains in a four‐bladed mixer , 2009 .

[4]  J. J. McCarthy Turning the corner in segregation , 2009 .

[5]  R. V. Daleffe,et al.  Effects of binary particle size distribution on the fluid dynamic behavior of fluidized, vibrated and vibrofluidized beds , 2008 .

[6]  H. Swinney,et al.  Influence of friction on granular segregation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Harald Kruggel-Emden,et al.  Review and extension of normal force models for the Discrete Element Method , 2007 .

[8]  M. Tarzia,et al.  Granular species segregation under vertical tapping: effects of size, density, friction, and shaking amplitude. , 2006, Physical Review Letters.

[9]  J. Swift,et al.  Mechanisms in the size segregation of a binary granular mixture. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  H. Jaeger,et al.  Structural signature of jamming in granular media , 2005, Nature.

[11]  Troy Shinbrot,et al.  A Taylor vortex analogy in granular flows , 2004, Nature.

[12]  Paul W. Cleary,et al.  Large scale industrial DEM modelling , 2004 .

[13]  J. J. McCarthy,et al.  Controlling cohesive particle mixing and segregation. , 2003, Physical review letters.

[14]  C. Kruelle,et al.  Reversing the Brazil-nut effect: competition between percolation and condensation. , 2003, Physical review letters.

[15]  R. Boom,et al.  Three-dimensional simulation of grain mixing in three different rotating drum designs for solid-state fermentation. , 2002, Biotechnology and bioengineering.

[16]  P. J. King,et al.  Spontaneous Air-Driven Separation in Vertically Vibrated Fine Granular Mixtures , 2002, Science.

[17]  H. Pak,et al.  Making a rough place “plane”: why heaping of vertically shaken sand must stop at low pressure , 2002 .

[18]  Heinrich M. Jaeger,et al.  Brazil-nut effect: Size separation of granular particles , 2001, Nature.

[19]  S. Luding,et al.  Reverse Brazil nut problem: competition between percolation and condensation. , 2000, Physical review letters.

[20]  D. Gauthier,et al.  Influence of the particle size distribution of powders on the velocities of minimum and complete fluidization , 1999 .

[21]  Troy Shinbrot,et al.  Spontaneous chaotic granular mixing , 1999, Nature.

[22]  T. Shinbrot,et al.  Reverse Buoyancy in Shaken Granular Beds , 1998 .

[23]  S. Hsiau,et al.  Motion state transitions in a vibrated granular bed , 1998 .

[24]  V. Dolgunin,et al.  Development of the model of segregation of particles undergoing granular flow down an inclined chute , 1998 .

[25]  Harles S. Campbell Self-diffusion in granular shear flows , 1997, Journal of Fluid Mechanics.

[26]  L. Vanel,et al.  Rise-Time Regimes of a Large Sphere in Vibrated Bulk Solids , 1997 .

[27]  Clément,et al.  Pattern formation in a vibrated two-dimensional granular layer. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  H. Pak,et al.  Bubbling in vertically vibrated granular materials , 1994, Nature.

[29]  P. Umbanhowar,et al.  Transition to parametric wave patterns in a vertically oscillated granular layer. , 1994, Physical review letters.

[30]  Knight,et al.  Vibration-induced size separation in granular media: The convection connection. , 1993, Physical review letters.

[31]  Clément,et al.  Arching effect model for particle size segregation. , 1993, Physical review letters.

[32]  Yutaka Tsuji,et al.  Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe , 1992 .

[33]  Taguchi,et al.  New origin of a convective motion: Elastically induced convection in granular materials. , 1992, Physical review letters.

[34]  Clément,et al.  Experimental study of heaping in a two-dimensional "sand pile" , 1992, Physical review letters.

[35]  N. Standish,et al.  Estimation of the Porosity of Particle Mixtures by a Linear-Mixture Packing Model , 1991 .

[36]  A. Rosato,et al.  Vibratory particle size sorting in multi-component systems , 1991 .

[37]  Rosato,et al.  Why the Brazil nuts are on top: Size segregation of particulate matter by shaking. , 1987, Physical review letters.

[38]  Fritz B. Prinz,et al.  Monte Carlo simulation of particulate matter segregation , 1986 .

[39]  Tatsuo Tanaka,et al.  Porosity estimation for random packings of spherical particles , 1984 .

[40]  Ian Smalley,et al.  Observation of particle segregation in vibrated granular systems , 1973 .

[41]  M. D. Faiman,et al.  Segregation kinetics of particulate solids systems. IV. Effect of particle shape on energy requirements. , 1967, Journal of pharmaceutical sciences.

[42]  M. D. Faiman,et al.  SEGREGATION KINETICS OF PARTICULATE SOLIDS SYSTEMS. II. PARTICLE DENSITY-SIZE INTERACTIONS AND WALL EFFECTS. , 1964, Journal of pharmaceutical sciences.

[43]  J L OLSEN,et al.  SEGREGATION KINETICS OF PARTICULATE SOLIDS SYSTEMS. I. INFLUENCE OF PARTICLE SIZE AND PARTICLE SIZE DISTRIBUTION. , 1964, Journal of pharmaceutical sciences.

[44]  R. McGeary,et al.  Mechanical Packing of Spherical Particles , 1961 .

[45]  G. Smith,et al.  The Segregation of Analyzed Samples , 1929 .

[46]  Osborne Reynolds Ll.D. F.R.S. LVII. On the dilatancy of media composed of rigid particles in contact. With experimental illustrations , 1885 .

[47]  J. Green,et al.  The legacy of neglect in the US , 1994 .

[48]  N. Standish,et al.  The porosity of particulate mixtures , 1979 .

[49]  Raymond D. Mindlin,et al.  Compliance of elastic bodies in contact , 1949 .