Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties.

Composites consist by definition of at least two materials (Gibbsian phases) with rather different properties. They exhibit a heterogeneous microstructure and possess improved properties with respect to their components. Furthermore, the design of their microstructure allows for tailoring their overall properties. In the last decades, intense work was performed on the synthesis of nanocomposites, which have the feature that at least one of their components is nanoscaled. However, the microstructure-property relationship of nanocomposite materials is still a challenging topic. This tutorial review paper deals with a special class of nanocomposites, i.e. polymer-derived ceramic nanocomposites (PDC-NCs), which have been shown to be promising materials for various structural and functional applications. Within this context, different preparative approaches for PDC-NCs as well as some of their properties will be presented and discussed. Furthermore, recent results concerning the relationship between the nano/microstructure of PDC-NCs and their properties will be highlighted.

[1]  P. Colombo,et al.  Polymer-derived microcellular SiOC foams with magnetic functionality , 2008, Journal of Materials Science.

[2]  T. Rouxel,et al.  Creep Viscosity and Stress Relaxation of Gel‐Derived Silicon Oxycarbide Glasses , 2001 .

[3]  R. Raj,et al.  Passive Oxidation of an Effluent System: The Case of Polymer‐Derived SiCO , 2005 .

[4]  F. Babonneau,et al.  Chemical characterization of Si-Al-C-O precursor and its pyrolysis , 1991 .

[5]  R. Riedel,et al.  Dispersion assessment and studies on AC percolative conductivity in polymer-derived Si–C–N/CNT ceramic nanocomposites , 2009, Journal of Materials Science.

[6]  C. Balan,et al.  Effect of ambient atmosphere on crosslinking of polysilazanes , 2011 .

[7]  F. Babonneau,et al.  Silicon Oxycarbide Glasses from Sol-Gel Precursors , 1992 .

[8]  S. Komarneni Feature article. Nanocomposites , 1992 .

[9]  Marcus Müller,et al.  Correlation Between Intrinsic Microstructure and Piezoresistivity in a SiOC Polymer‐Derived Ceramic , 2011 .

[10]  S. Gialanella,et al.  Thermal Evolution and Crystallisation of Polydimethylsiloxane-Zirconia Nanocomposites Prepared by the Sol-Gel Method , 1999 .

[11]  R. Raj,et al.  Crystallization Maps for SiCO Amorphous Ceramics , 2007 .

[12]  V. Machovič,et al.  Cobalt-containing silicon oxycarbide glasses derived from poly[methyl(phenyl)]siloxane and cobalt phthalate , 2006 .

[13]  R. Raj,et al.  Amorphous Silicoboron Carbonitride Ceramic with Very High Viscosity at Temperatures above 1500°C , 1998 .

[14]  S. Sen,et al.  29Si and 13C Solid-State NMR Spectroscopic Study of Nanometer-Scale Structure and Mass Fractal Characteristics of Amorphous Polymer Derived Silicon Oxycarbide Ceramics , 2010 .

[15]  R. Ceccato,et al.  Pyrolysis Chemistry of Sol−Gel-Derived Poly(dimethylsiloxane)−Zirconia Nanocomposites. Influence of Zirconium on Polymer-to-Ceramic Conversion , 1998 .

[16]  Yiguang Wang,et al.  Oxidation/Corrosion of Polymer‐Derived SiAlCN Ceramics in Water Vapor , 2006 .

[17]  Tobias Melz,et al.  Piezoresistive Effect in SiOC Ceramics for Integrated Pressure Sensors , 2010 .

[18]  Mamoru Omori,et al.  Synthesis of Continuous Sic Fibers with High Tensile Strength , 1976 .

[19]  R. Riedel,et al.  Processing and magnetic properties of metal-containing SiCN ceramic micro- and nano-composites , 2008, Journal of Materials Science.

[20]  P. Greil Active‐Filler‐Controlled Pyrolysis of Preceramic Polymers , 1995 .

[21]  J. Kapat,et al.  Silicoaluminum Carbonitride with Anomalously High Resistance to Oxidation and Hot Corrosion , 2004 .

[22]  H. Kleebe,et al.  Polymer-Derived Silicon Oxycarbide/Hafnia Ceramic Nanocomposites. Part II: Stability Toward Decomposition and Microstructure Evolution at T≫1000°C , 2010 .

[23]  Sandeep R. Shah,et al.  Polymer-derived SiCN composites with magnetic properties , 2003 .

[24]  Y. Kohtoku,et al.  A Tough, Thermally Conductive Silicon Carbide Composite with High Strength up to 1600°C in Air , 1998 .

[25]  F. Taulelle,et al.  Pyrolysis chemistry of polysilazane precursors to silicon carbonitride. Part 2.-Solid-state NMR of the pyrolytic residues , 1997 .

[26]  J. S. Hartman,et al.  A29Si magic angle spinning NMR and DTA study of thermal crystallization of sphene and zircon gels , 1990 .

[27]  H. Kleebe,et al.  Phase separation of a hafnium alkoxide-modified polysilazane upon polymer-to-ceramic transformation—A case study , 2012 .

[28]  R. Riedel,et al.  Inorganic solid-state chemistry with main group element carbodiimides , 1998 .

[29]  C. Sanchez,et al.  Structural investigation of polydimethylsiloxane–vanadate hybrid materials , 2000 .

[30]  F. Aldinger,et al.  A silicoboron carbonitride ceramic stable to 2,000°C , 1996, Nature.

[31]  H. Kleebe,et al.  Newtonian Viscosity of Amorphous Silicon Carbonitride at High Temperature , 2005 .

[32]  H. Kleebe,et al.  Strong influence of polymer architecture on the microstructural evolution of hafnium-alkoxide-modified silazanes upon ceramization. , 2011, Small.

[33]  F. Babonneau Hybrid siloxane-oxide materials via sol-gel processing: Structural characterization , 1994 .

[34]  B. Tang,et al.  Novel ceramic and organometallic depolymerization products from poly(ferrocenylsilanes)via pyrolysis , 1993 .

[35]  Young‐Wook Kim,et al.  Silicon carbide particle formation from carbon black —polymethylsilsesquioxane mixtures with melt pressing , 2008 .

[36]  R. Riedel,et al.  Silazane derived ceramics and related materials , 2000 .

[37]  Paolo Colombo,et al.  Polymer‐Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics , 2010 .

[38]  F. Babonneau,et al.  Synthesis and characterization of SiZrCO ceramics from polymer precursors , 1991 .

[39]  R. Riedel,et al.  Crystallization behavior and controlling mechanism of iron-containing Si-C-N ceramics. , 2009, Inorganic chemistry.

[40]  Sandeep R. Shah,et al.  Oxidation Behavior of SiCN–ZrO2 Fiber Prepared from Alkoxide‐Modified Silazane , 2004 .

[41]  Kiyoshi Kumagawa,et al.  Production mechanism of polyzirconocarbo- silane using zirconium(IV)acetylacetonate and its conversion of the polymer into inorganic materials , 1998 .

[42]  K. Kikuta,et al.  Synthesis of Poly-Titanosilazanes and Conversion into Si3N4-TiN Ceramics , 2000 .

[43]  H. Kleebe,et al.  Polymer-Derived SiOC/ZrO2 Ceramic Nanocomposites with Excellent High-Temperature Stability , 2010 .

[44]  É. Lippmaa,et al.  Structural studies of silicates by solid-state high-resolution silicon-29 NMR , 1980 .

[45]  F. Babonneau,et al.  29 Si MAS NMR investigation of the pyrolysis process of cross-linked polysiloxanes prepared from polymethylhydrosiloxane , 1996 .

[46]  F. Babonneau,et al.  Structural and Microstructural Evolution During Pyrolysis of Hybrid Polydimethylsiloxane-Titania Nanocomposites , 2005 .

[47]  K. Niihara New Design Concept of Structural Ceramics , 1991 .

[48]  L. Zhai,et al.  A Silicon Carbonitride Ceramic with Anomalously High Piezoresistivity , 2008 .

[49]  R. Raj,et al.  Energetics of SixOyCz Polymer‐Derived Ceramics Prepared Under Varying Conditions , 2008 .

[50]  H. Kleebe,et al.  Pressureless synthesis of fully dense and crack-free SiOC bulk ceramics via photo-crosslinking and pyrolysis of a polysiloxane , 2011 .

[51]  L. E. Cross,et al.  Connectivity and piezoelectric-pyroelectric composites , 1978 .

[52]  Y. Hasegawa,et al.  Development of high tensile strength silicon carbide fibre using an organosilicon polymer precursor , 1978, Nature.

[53]  K. Okamura Ceramic fibres from polymer precursors , 1987 .

[54]  R. Riedel,et al.  Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions , 2012 .

[55]  R. Raj,et al.  Thermodynamically Stable SixOyCz Polymer-Like Amorphous Ceramics , 2007 .

[56]  Yi Fan,et al.  Stress-dependent piezoresistivity of tunneling-percolation systems , 2009 .

[57]  T. Yamamura,et al.  Production mechanism of polytitanocarbosilane and its conversion of the polymer into inorganic materials , 1992 .

[58]  P. Greil,et al.  Electrical Characterization of Polymethylsiloxane/MoSi2‐Derived Composite Ceramics , 2004 .

[59]  F. Aldinger,et al.  Structural investigations of Si/C/N-ceramics from polysilazane precursors by nuclear magnetic resonance , 1996 .

[60]  R. Raj,et al.  A Model for the Nanodomains in Polymer‐Derived SiCO , 2006 .

[61]  H. Kleebe,et al.  Systematic Structural Characterization of the High-Temperature Behavior of Nearly Stoichiometric Silicon Oxycarbide Glasses , 2004 .

[62]  H. Kleebe,et al.  Polymer‐Derived Silicon Oxycarbide/Hafnia Ceramic Nanocomposites. Part I: Phase and Microstructure Evolution During the Ceramization Process , 2010 .

[63]  R. Riedel,et al.  Enthalpy of Formation of Carbon‐Rich Polymer‐Derived Amorphous SiCN Ceramics , 2008 .

[64]  R. Riedel,et al.  Crystallization Behavior of Amorphous Silicon Carbonitride Ceramics Derived from Organometallic Precursors , 2004 .

[65]  X. Jing,et al.  Nanocluster-Containing Mesoporous Magnetoceramics from Hyperbranched Organometallic Polymer Precursors† , 2000 .

[66]  R. Theissmann,et al.  Influence of Boron on the Microstructure of Polymer Derived SiCO Ceramics , 2004 .