Adjacency Concept for Pairs of Natural Numbers

The articles [8], [11], [10], [5], [1], [7], [12], [4], [3], [2], [9], and [6] provide the notation and terminology for this paper. In this paper i, j, k, k1, k2, n, m, i1, i2, j1, j2 are natural numbers. Let us consider i1, i2. We say that i1 and i2 are adjacent if and only if: (Def. 1) i2 = i1 + 1 or i1 = i2 + 1. One can prove the following propositions: (1) For all i1, i2 such that i1 and i2 are adjacent holds i1 +1 and i2 +1 are adjacent. (2) For all i1, i2 such that i1 and i2 are adjacent and 1 ≤ i1 and 1 ≤ i2 holds i1 − ′ 1 and i2 − ′ 1 are adjacent. Let us consider i1, j1, i2, j2. We say that i1, j1, i2, and j2 are adjacent if and only if: (Def. 2) i1 and i2 are adjacent and j1 = j2 or i1 = i2 and j1 and j2 are adjacent. The following propositions are true: (3) For all i1, i2, j1, j2 such that i1, j1, i2, and j2 are adjacent holds i1 +1, j1 + 1, i2 + 1, and j2 + 1 are adjacent. (4) Given i1, i2, j1, j2. Suppose i1, j1, i2, and j2 are adjacent and 1 ≤ i1 and 1 ≤ i2 and 1 ≤ j1 and 1 ≤ j2. Then i1 − ′ 1, j1 − ′ 1, i2 − ′ 1, and j2 − ′ 1 are adjacent.

[1]  Agata Darmochwał Families of Subsets , Subspaces and Mappings in Topological Spaces , 1989 .

[2]  Grzegorz Bancerek Minimal Signature for Partial Algebra , 1996 .

[3]  Yasushi Tanaka,et al.  On the Decomposition of the States of SCM , 1996 .

[4]  Yatsuka Nakamura,et al.  On a Mathematical Model of Programs , 1992 .

[5]  Andrzej Trybulec,et al.  Many-sorted Sets , 1993 .

[6]  Artur Korni,et al.  Definitions and Properties of the Join and Meet of Subsets 1 , 1996 .

[7]  Agata Darmochwa Euclidean Space , 2018, How to Pass the FRACP Written Examination.

[8]  A. Trybulec Domains and Their Cartesian Products , 1990 .

[9]  A. Zalewska,et al.  Properties of Binary Relations , 1990 .

[10]  Zinaida Trybulec,et al.  Boolean Properties of Sets , 1990 .

[11]  Grzegorz Bancerek,et al.  Directed Sets, Nets, Ideals, Filters, and Maps 1 , 1997 .

[12]  Grzegorz Bancerek Continuous, Stable, and Linear Maps of Coherence Spaces , 1996 .

[13]  Edmund Woronowicz Relations Defined on Sets , 1990 .

[14]  Micha l Muzalewski,et al.  Three-Argument Operations and Four-Argument Operations 1 , 1991 .

[15]  Yatsuka Nakamura,et al.  Decomposing a Go-Board into Cells , 1996 .

[16]  Micha l Muzalewski,et al.  N-Tuples and Cartesian Products for n=5 1 , 1991 .

[17]  Czesław Bylí Finite Sequences and Tuples of Elements of a Non-empty Sets , 1990 .

[18]  Grzegorz Bancerek,et al.  Context-Free Grammar - Part 1 , 1991 .

[19]  Properties of Relational Structures , Posets , Lattices and Maps , 2022 .

[20]  Yatsuka Nakamura,et al.  Components and Unions of Components , 1996 .

[21]  Artur Korni Certain Facts about Families of Subsets of Many Sorted Sets , 1996 .

[22]  Andrzej Trybulec,et al.  Miscellaneous Facts about Functions , 1996 .

[23]  Beata Padlewska Connected Spaces , 1989 .

[24]  G. Bancerek Konig's Theorem , 1990 .

[25]  Artur Korniłowicz,et al.  Cartesian Products of Relations and Relational Structures 1 , 1996 .

[26]  Adam Grabowski,et al.  On the Category of Posets , 1996 .

[27]  Wojciech A. Trybulec Partially Ordered Sets , 1990 .

[28]  B. Balkay,et al.  Introduction to lattice theory , 1965 .

[29]  Beata Madras,et al.  Products of Many Sorted Algebras , 1996 .

[30]  Yozo Toda,et al.  The Formalization of Simple Graphs , 1996 .

[31]  A. Trybulec Left and Right Component of the Complement of a Special Closed Curve , 1996 .

[32]  Czeslaw Bylinski,et al.  Basic Functions and Operations on Functions , 1989 .

[33]  Grzegorz Bancerek,et al.  Sequences of Ordinal Numbers , 1990 .

[34]  S. Zukowski,et al.  Introduction to Lattice Theory , 1990 .

[35]  Horst Herrlich,et al.  Galois Connections , 1985, Mathematical Foundations of Programming Semantics.

[36]  Liz Sonenberg,et al.  Fixed Point Theorems and Semantics: A Folk Tale , 1982, Inf. Process. Lett..

[37]  Grzegorz Bancerek,et al.  Zermelo Theorem and Axiom of Choice , 1990 .

[38]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[39]  Agata Darmochwa,et al.  Topological Spaces and Continuous Functions , 1990 .

[40]  Andrzej Trybulec Categories without Uniqueness of cod and dom , 1996 .

[41]  Kenneth Halpern August The Cardinal Numbers , 1888, Nature.

[42]  Yatsuka Nakamura,et al.  On the Composition of Macro Instructions. Part III 1 , 1997 .

[43]  Artur Korni,et al.  Some Basic Properties of Many Sorted Sets , 1996 .

[44]  N. Asamoto Some Multi Instructions Defined by Sequence of Instructions of SCM FSA , 1996 .

[45]  G. Bancerek The Fundamental Properties of Natural Numbers , 1990 .

[46]  Jozef Bia,et al.  Group and Field Definitions , 1990 .

[47]  Grzegorz Bancerek,et al.  Bounds in Posets and Relational Substructures 1 , 1997 .

[48]  Yatsuka Nakamura,et al.  The First Part of Jordan's Theorem for Special Polygons , 1997 .

[49]  Mariusz Giero More on Products of Many Sorted Algebras , 1996 .

[50]  Beata Padlewska,et al.  Families of Sets , 1990 .

[51]  Andrzej Trybulec,et al.  Tuples, Projections and Cartesian Products , 1990 .

[52]  Grzegorz Bancerek,et al.  The Well Ordering Relations , 1990 .

[53]  Yatsuka Nakamura,et al.  Introduction to Go-Board - Part II , 1992 .

[54]  Yatsuka Nakamura,et al.  On the Compositions of Macro Instructions. Part I , 1997 .

[55]  Yatsuka Nakamura,et al.  A Mathematical Model of CPU , 1992 .

[56]  Artur Korni Extensions of Mappings on Generator Set , 1996 .

[57]  Wojciech A. Trybulec Binary Operations on Finite Sequences , 1990 .

[58]  R. Milewski Lattice of Congruences in Many Sorted Algebra , 1996 .

[59]  Ewa Burakowska,et al.  Subalgebras of Many Sorted Algebra. Lattice of Subalgebras , 1996 .

[60]  N. Asamoto Conditional Branch Macro Instructions of SCMFSA. Part II , 1997 .

[61]  Andrzej Trybulec,et al.  Semilattice Operations on Finite Subsets , 1990 .

[62]  Zbigniew Karno,et al.  Continuity of Mappings over the Union of Subspaces , 1992 .

[63]  Grzegorz Bancerek,et al.  Translations, Endomorphisms, and Stable Equational Theories , 1996 .

[64]  Czesław Bylí,et al.  A Classical First Order Language , 1990 .

[65]  Yatsuka Nakamura,et al.  An Extension of SCM , 1996 .

[66]  G. Bancerek Filters - Part II. Quotient Lattices Modulo Filters and Direct Product of Two Lattices , 1991 .

[67]  Grzegorz Bancerek,et al.  Curried and Uncurried Functions , 1990 .

[68]  G. Bancerek,et al.  Ordinal Numbers , 2003 .

[69]  Czesław Bylí Products and Coproducts in Categories , 1992 .

[70]  Grzegorz Bancerek,et al.  Segments of Natural Numbers and Finite Sequences , 1990 .

[71]  Adam Grabowski,et al.  Boolean Posets, Posets under Inclusion and Products of Relational Structures 1 , 1997 .

[72]  Piotr Rudnicki,et al.  Memory Handling for SCM FSA 1 , 1997 .

[73]  Katarzyna Jankowska,et al.  Matrices. Abelian Group of Matrices , 1991 .

[74]  A. Trybulec Tarski Grothendieck Set Theory , 1990 .

[75]  Grzegorz Zwara,et al.  The Divisibility of Integers and Integer Relatively Primes 1 , 1990 .

[76]  Andrzej Trybulec,et al.  On the Decomposition of Finite Sequences , 1996 .

[77]  Czesław Bylí,et al.  Binary Operations , 2019, Problem Solving in Mathematics and Beyond.

[78]  Beata Perkowska,et al.  Free Many Sorted Universal Algebra , 1996 .

[79]  Andrzej Trybulec,et al.  Binary Operations Applied to Functions , 1990 .

[80]  Grzegorz Bancerek,et al.  Cartesian Product of Functions , 1991 .

[81]  Wojciech A. Trybulec Pigeon Hole Principle , 1990 .

[82]  Leszek Borys,et al.  Paracompact and Metrizable Spaces , 1991 .

[83]  Adam Grabowski Inverse Limits of Many Sorted Algebras , 1997 .