MECHANICAL BEHAVIOR AND CHARACTERIZATION OF MICROCAPSULES

▪ Abstract In recent years microcapsule systems have found applications in many areas of science and technology. Their use to a large extent depends on how mechanical properties are understood and controlled. Here we review different experimental techniques recently developed to probe microcapsule mechanics and to characterize other physical properties of the shell material and capsule interior. We illustrate the potential of these experimental techniques and theoretical models by using data obtained for polyelectrolyte multilayer microcapsules, one of the most promising systems that shows extremely rich behavior. Applications and/or extensions of methods to study other capsule systems, including bioengineered composites and even living cells, would be straightforward.

[1]  H. Möhwald,et al.  Stability and mechanical properties of polyelectrolyte capsules obtained by stepwise assembly of poly(styrenesulfonate sodium salt) and poly(diallyldimethyl ammonium) chloride onto melamine resin particles. , 2001 .

[2]  Christopher J. Barrett,et al.  Fabrication of Microporous Thin Films from Polyelectrolyte Multilayers , 2000 .

[3]  H. Butt,et al.  Steric Forces Measured with the Atomic Force Microscope at Various Temperatures , 1999 .

[4]  H. Möhwald,et al.  Polyelectrolyte multilayer capsule permeability control , 2002 .

[5]  H. Möhwald,et al.  Coating of colloidal particles by controlled precipitation of polymers , 2001 .

[6]  V. Lulevich,et al.  Comparative analysis of hollow and filled polyelectrolyte microcapsules templated on melamine formaldehyde and carbonate cores , 2004 .

[7]  F. Caruso,et al.  Core-shell colloids and hollow polyelectrolyte capsules based on diazoresins. , 2001 .

[8]  Gleb E. Yakubov,et al.  Dynamic effects on force measurements. I. Viscous drag on the atomic force microscope cantilever , 2001 .

[9]  F. Caruso,et al.  Influence of solvent quality on the growth of polyelectrolyte multilayers. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[10]  F. Caruso,et al.  Electrostatically assembled polyelectrolyte/dendrimer multilayer films as ultrathin nanoreservoirs , 2002 .

[11]  K. Kremer,et al.  Strongly Charged, Flexible Polyelectrolytes in Poor Solvents: Molecular Dynamics Simulations , 1998, cond-mat/9812044.

[12]  A. Voigt,et al.  Layer‐by‐Layer Self‐Assembly of Polyelectrolyte and Low Molecular Weight Species into Capsules , 2001 .

[13]  Andreas Voigt,et al.  pH-controlled macromolecule encapsulation in and release from polyelectrolyte multilayer nanocapsules. , 2001 .

[14]  H. Möhwald,et al.  Influence of the Ionic Strength on the Polyelectrolyte Multilayers' Permeability , 2003 .

[15]  Martin E. R. Shanahan,et al.  A novel test for the appraisal of solid/solid interfacial interactions , 1997 .

[16]  G. Decher,et al.  From Functional Core/Shell Nanoparticles Prepared via Layer-by-Layer Deposition to Empty Nanospheres , 2004 .

[17]  G. J. Fleer,et al.  Formation and stability of multilayers of polyelectrolytes. , 1996 .

[18]  G. Glasser,et al.  Effect of organic solvent on the permeability and stiffness of polyelectrolyte multilayer microcapsules , 2005 .

[19]  H. Möhwald,et al.  Fabrication of micro reaction cages with tailored properties. , 2001, Journal of the American Chemical Society.

[20]  J. Schlenoff,et al.  Polyelectrolyte Multilayers Containing a Weak Polyacid: Construction and Deconstruction , 2001 .

[21]  Caruso,et al.  Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating , 1998, Science.

[22]  Michael F. Rubner,et al.  pH-Dependent Thickness Behavior of Sequentially Adsorbed Layers of Weak Polyelectrolytes , 2000 .

[23]  Young's Modulus of Polyelectrolyte Multilayers from Microcapsule Swelling , 2003, cond-mat/0307622.

[24]  Williams,et al.  Compressive deformation of a single microcapsule. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  P. Hammond Form and Function in Multilayer Assembly: New Applications at the Nanoscale , 2004 .

[26]  G. Sukhorukov,et al.  Defined Picogram Dose Inclusion and Release of Macromolecules using Polyelectrolyte Microcapsules , 2005 .

[27]  V. Lulevich,et al.  Effect of pH and salt on the stiffness of polyelectrolyte multilayer microcapsules. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[28]  Dong Ha Kim,et al.  Assembly and mechanical properties of phosphorus dendrimer/polyelectrolyte multilayer microcapsules. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[29]  R. Hochmuth,et al.  Micropipette aspiration of living cells. , 2000, Journal of biomechanics.

[30]  R. Dagastine,et al.  Forces between a rigid probe particle and a liquid interface. III. Extraction of the planar half-space interaction energy E(D). , 2004, Journal of colloid and interface science.

[31]  Frank Caruso,et al.  1. Ultrathin Multilayer Polyelectrolyte Films on Gold: Construction and Thickness Determination , 1997 .

[32]  Qi Liao,et al.  Molecular dynamics simulations of polyelectrolyte solutions: Osmotic coefficient and counterion condensation , 2003 .

[33]  Byoung-Suhk Kim,et al.  Multilayer DNA/poly(allylamine hydrochloride) microcapsules: assembly and mechanical properties. , 2005, Biomacromolecules.

[34]  V. Lulevich,et al.  Deformation properties of nonadhesive polyelectrolyte microcapsules studied with the atomic force microscope , 2003 .

[35]  Gleb B. Sukhorukov,et al.  LAYER-BY-LAYER SELF ASSEMBLY OF POLYELECTROLYTES ON COLLOIDAL PARTICLES , 1998 .

[36]  Lars Dähne,et al.  Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers. , 2004, Angewandte Chemie.

[37]  V. Lulevich,et al.  Mechanical Properties of Polyelectrolyte Microcapsules Filled with a Neutral Polymer , 2003 .

[38]  H. El-Shall,et al.  Atomic force microscopy measurement of the elastic properties of the kidney epithelial cells. , 2005, Journal of colloid and interface science.

[39]  J. Schlenoff,et al.  Factors Controlling the Growth of Polyelectrolyte Multilayers , 1999 .

[40]  A. Gliozzi,et al.  Confocal laser scanning microscopy to study formation and properties of polyelectrolyte nanocapsules derived from CdCO3 templates , 2002, Microscopy research and technique.

[41]  Spatial distribution of polyelectrolyte and counterions in nanocapsules: a computer simulation study. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  V. Bloomfield,et al.  Osmotic pressure of polyelectrolytes without added salt , 1990 .

[43]  Alain M. Jonas,et al.  Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties , 2000 .

[44]  D. E. Aston,et al.  Quantitative Analysis of Fluid Interface-Atomic Force Microscopy. , 2001, Journal of colloid and interface science.

[45]  Helmuth Möhwald,et al.  Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. , 1998, Angewandte Chemie.

[46]  K. Vasilev,et al.  Interaction and adhesion properties of polyelectrolyte multilayers. , 2005, Langmuir.

[47]  Lars Dähne,et al.  Smart Micro‐ and Nanocontainers for Storage, Transport, and Release , 2001 .

[48]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[49]  A. Fery,et al.  Salt softening of polyelectrolyte multilayer capsules. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[50]  V. Lulevich,et al.  Investigation of molecular weight and aging effects on the stiffness of polyelectrolyte multilayer microcapsules , 2004 .

[51]  H. Butt,et al.  Interaction Forces between Hydrophobic Surfaces. Attractive Jump as an Indication of Formation of "Stable" Submicrocavities , 2000 .

[52]  Olga I. Vinogradova,et al.  Mechanical properties of polyelectrolyte multilayer microcapsules , 2004 .

[53]  B. Robertson,et al.  Premelting at ice-solid interfaces studied via velocity-dependent indentation with force microscope tips , 2001 .

[54]  B. Bauer,et al.  Dendrimer Templates for the Formation of Gold Nanoclusters , 2000 .

[55]  Denis Andrienko,et al.  Elasticity of polyelectrolyte multilayer microcapsules. , 2004, The Journal of chemical physics.

[56]  Gleb B. Sukhorukov,et al.  Urease encapsulation in nanoorganized microshells. , 2001 .

[57]  H. Butt,et al.  Contact angles on hydrophobic microparticles at water–air and water–hexadecane interfaces , 2000 .

[58]  A. Fery,et al.  Elastic properties of polyelectrolyte capsules studied by atomic-force microscopy and RICM , 2003, The European physical journal. E, Soft matter.

[59]  Gleb B. Sukhorukov,et al.  Incorporation of macromolecules into polyelectrolyte micro- and nanocapsules via surface controlled precipitation on colloidal particles , 2002 .

[60]  G. Sukhorukov,et al.  Polyelectrolyte capsules modified with YF3 nanoparticles: An AFM study , 2004 .

[61]  Olga I. Vinogradova,et al.  Dynamic effects on force measurements. 2. Lubrication and the atomic force microscope , 2003 .

[62]  G. Sukhorukov Designed nano-engineered polymer films on colloidal particles and capsules. , 2001 .

[63]  Theory of Polyelectrolyte Solutions , 1996, cond-mat/9601022.

[64]  Byoung-Suhk Kim,et al.  Mechanical properties of polyelectrolyte-filled multilayer microcapsules studied by atomic force and confocal microscopy. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[65]  Superswollen ultrasoft polyelectrolyte microcapsules , 2005 .

[66]  G I Zahalak,et al.  Cell poking. Determination of the elastic area compressibility modulus of the erythrocyte membrane. , 1984, Biophysical journal.

[67]  S. Moya,et al.  Elasticity of hollow polyelectrolyte capsules prepared by the layer-by-layer technique , 2001 .

[68]  Gleb B. Sukhorukov,et al.  Stepwise Polyelectrolyte Assembly on Particle Surfaces: a Novel Approach to Colloid Design , 1998 .

[69]  M. Schönhoff Layered polyelectrolyte complexes: physics of formation and molecular properties , 2003 .

[70]  Richard M. Pashley,et al.  Direct measurement of colloidal forces using an atomic force microscope , 1991, Nature.

[71]  Jacob N. Israelachvili,et al.  Measurements of Hydrophobic and DLVO Forces in Bubble-Surface Interactions in Aqueous Solutions , 1994 .

[72]  R. Hayes,et al.  Forces Measured between Latex Spheres in Aqueous Electrolyte: Non-DLVO Behavior and Sensitivity to Dissolved Gas , 1999 .

[73]  J. Ralston,et al.  Surface and Capillary Forces Affecting Air Bubble−Particle Interactions in Aqueous Electrolyte , 1996 .

[74]  H. Möhwald,et al.  Layer-by-layer engineering of biocompatible, decomposable core-shell structures. , 2003, Biomacromolecules.

[75]  A. Takahashi,et al.  The Osmotic Pressure of Polyelectrolyte in Neutral Salt Solutions , 1970 .

[76]  Kurt Kremer,et al.  The nature of flexible linear polyelectrolytes in salt free solution: A molecular dynamics study , 1995 .

[77]  H. Butt,et al.  Forces between polystyrene surfaces in water-electrolyte solutions: Long-range attraction of two types? , 2001 .

[78]  Byoung-Suhk Kim,et al.  Salt softening of polyelectrolyte multilayer microcapsules. , 2005, Journal of colloid and interface science.

[79]  H. Butt,et al.  Analysis of plastic deformation in atomic force microscopy: Application to ice , 2000 .

[80]  H. Möhwald,et al.  Hollow polyelectrolyte shells: Exclusion of polymers and Donnan equilibrium. , 1999 .

[81]  James F. Shackelford,et al.  The CRC Materials Science And Engineering Handbook , 1991 .

[82]  G. Sukhorukov,et al.  Reversible swelling of polyanion/polycation multilayer films in solutions of different ionic strength , 1996 .

[83]  A. Voigt,et al.  Plastic behaviour of polyelectrolyte microcapsules derived from colloid templates. , 2000, Journal of microencapsulation.

[84]  Khomutov,et al.  Assembly of Alternated Multivalent Ion/Polyelectrolyte Layers on Colloidal Particles. Stability of the Multilayers and Encapsulation of Macromolecules into Polyelectrolyte Capsules. , 2000, Journal of colloid and interface science.

[85]  Dominique Barthès-Biesel,et al.  Compression of biocompatible liquid-filled HSA-alginate capsules: determination of the membrane mechanical properties. , 2003, Biotechnology and bioengineering.