Polymer Films from Cellulose Nanofibrils—Effects from Interfibrillar Interphase on Mechanical Behavior

Dense polymeric films based on network-forming cellulose nanofibrils (CNFs) have excellent mechanical properties but are limited by moisture sensitivity. Here, interfibrillar effects from CNF surfa...

[1]  L. Berglund,et al.  Structural and Ecofriendly Holocellulose Materials from Wood: Microscale Fibers and Nanoscale Fibrils , 2020, Advanced materials.

[2]  L. Bergström,et al.  Best Practice for Reporting Wet Mechanical Properties of Nanocellulose-based Materials. , 2020, Biomacromolecules.

[3]  L. Berglund,et al.  Eco-Friendly Cellulose Nanofibrils Designed by Nature - Effects from Preserving Native State. , 2019, ACS nano.

[4]  P. Hansson,et al.  The influence of solubility on the adsorption of different Xyloglucan fractions at Cellulose Water Interfaces. , 2019, Biomacromolecules.

[5]  J. J. Valle-Delgado,et al.  Understanding hemicellulose-cellulose interactions in cellulose nanofibril-based composites. , 2019, Journal of colloid and interface science.

[6]  I. Furó,et al.  Quantifying Localized Macromolecular Dynamics within Hydrated Cellulose Fibril Aggregates , 2019, Macromolecules.

[7]  Q. Meng,et al.  Mechanics of Strong and Tough Cellulose Nanopaper , 2019, Applied Mechanics Reviews.

[8]  Zhiguo Wang,et al.  Contribution of hemicellulose to cellulose nanofiber-based nanocomposite films with enhanced strength, flexibility and UV-blocking properties , 2019, Cellulose.

[9]  Nitesh Mittal,et al.  Water-Induced Structural Rearrangements on the Nanoscale in Ultrathin Nanocellulose Films , 2019, Macromolecules.

[10]  A. Isogai,et al.  Dual Counterion Systems of Carboxylated Nanocellulose Films with Tunable Mechanical, Hydrophilic, and Gas-Barrier Properties. , 2019, Biomacromolecules.

[11]  L. Berglund,et al.  High-Density Molded Cellulose Fibers and Transparent Biocomposites Based on Oriented Holocellulose. , 2019, ACS applied materials & interfaces.

[12]  A. Gandini,et al.  Recent advances in surface-modified cellulose nanofibrils , 2019, Progress in Polymer Science.

[13]  Audrey Moores,et al.  Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. , 2018, Chemical reviews.

[14]  Akira Isogai,et al.  The Crystallinity of Nanocellulose: Dispersion-Induced Disordering of the Grain Boundary in Biologically Structured Cellulose , 2018, ACS Applied Nano Materials.

[15]  Olli Ikkala,et al.  Advanced Materials through Assembly of Nanocelluloses , 2018, Advanced materials.

[16]  L. Berglund,et al.  Preserving Cellulose Structure: Delignified Wood Fibers for Paper Structures of High Strength and Transparency. , 2018, Biomacromolecules.

[17]  Jo Anne Shatkin,et al.  Current characterization methods for cellulose nanomaterials. , 2018, Chemical Society reviews.

[18]  F. Vilaplana,et al.  Solubility of Softwood Hemicelluloses. , 2018, Biomacromolecules.

[19]  L. Berglund,et al.  Nematic structuring of transparent and multifunctional nanocellulose papers. , 2018, Nanoscale horizons.

[20]  A. Walther,et al.  Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space , 2017 .

[21]  L. Heux,et al.  Quantification of a tightly adsorbed monolayer of xylan on cellulose surface , 2017, Cellulose.

[22]  A. Walther,et al.  Counterion Size and Nature Control Structural and Mechanical Response in Cellulose Nanofibril Nanopapers. , 2017, Biomacromolecules.

[23]  J. Bras,et al.  Production of cellulose nanofibrils: A review of recent advances , 2016 .

[24]  Thomas J. Simmons,et al.  Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR , 2016, Nature Communications.

[25]  I. Furó,et al.  Interface tailoring through covalent hydroxyl-epoxy bonds improves hygromechanical stability in nanocellulose materials , 2016 .

[26]  Jun Liu,et al.  Hemicellulose-reinforced nanocellulose hydrogels for wound healing application , 2016, Cellulose.

[27]  L. Berglund,et al.  Role of hydrogen bonding in cellulose deformation: the leverage effect analyzed by molecular modeling , 2016, Cellulose.

[28]  A. Isogai,et al.  Viscoelastic Properties of Core-Shell-Structured, Hemicellulose-Rich Nanofibrillated Cellulose in Dispersion and Wet-Film States. , 2016, Biomacromolecules.

[29]  A. Isogai,et al.  Water-resistant and high oxygen-barrier nanocellulose films with interfibrillar cross-linkages formed through multivalent metal ions , 2016 .

[30]  L. Berglund,et al.  Strong reinforcing effects from galactoglucomannan hemicellulose on mechanical behavior of wet cellulose nanofiber gels , 2015, Journal of Materials Science.

[31]  J. Seppälä,et al.  Effect of interfibrillar PVA bridging on water stability and mechanical properties of TEMPO/NaClO2 oxidized cellulosic nanofibril films. , 2015, Carbohydrate polymers.

[32]  L. Berglund,et al.  Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper. , 2015, Biomacromolecules.

[33]  M. Lindström,et al.  Extraction of hemicelluloses from fiberized spruce wood. , 2015, Carbohydrate polymers.

[34]  A. Mihranyan,et al.  Citric Acid Cross-Linked Nanocellulose-Based Paper for Size-Exclusion Nanofiltration. , 2015, ACS biomaterials science & engineering.

[35]  Herbert Sixta,et al.  Ionic Liquids for the Production of Man-Made Cellulosic Fibers: Opportunities and Challenges , 2015 .

[36]  M. Österberg,et al.  Nanocomposite films based on cellulose nanofibrils and water-soluble polysaccharides , 2014 .

[37]  Ying Gu,et al.  Cellulose Synthesis and Its Regulation , 2014, The arabidopsis book.

[38]  L. Berglund,et al.  Highly ductile fibres and sheets by core-shell structuring of the cellulose nanofibrils , 2014, Cellulose.

[39]  H. Sehaqui,et al.  Hydrophobic cellulose nanopaper through a mild esterification procedure , 2014, Cellulose.

[40]  A. Walther,et al.  Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. , 2013, Biomacromolecules.

[41]  Quanbin Zhang,et al.  Chemical composition and moisture-absorption/retention ability of polysaccharides extracted from five algae. , 2013, International journal of biological macromolecules.

[42]  Akira Isogai,et al.  An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. , 2013, Biomacromolecules.

[43]  A. Isogai,et al.  Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO₂ systems in water at pH 4.8 or 6.8. , 2012, International journal of biological macromolecules.

[44]  Jasna S. Stevanic,et al.  Arabinoxylan/nanofibrillated cellulose composite films , 2012, Journal of Materials Science.

[45]  Artem Kulachenko,et al.  Elastic properties of cellulose nanopaper , 2012, Cellulose.

[46]  A. Isogai,et al.  Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. , 2012, Biomacromolecules.

[47]  Olli Ikkala,et al.  Strong and tough cellulose nanopaper with high specific surface area and porosity. , 2011, Biomacromolecules.

[48]  M. T. DeMeuse,et al.  Equipment design and requirements of biaxially stretched films , 2011 .

[49]  M. Demeuse Other polymers used for biaxial films , 2011 .

[50]  H. Ilvesniemi,et al.  Pressurized hot water extraction of Norway spruce hemicelluloses using a flow-through system , 2011, Wood Science and Technology.

[51]  J. Hermans,et al.  Quantitative evaluation of orientation in cellulose fibres from the X‐ray fibre diagram , 2010 .

[52]  Andong Liu,et al.  Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. , 2010, Biomacromolecules.

[53]  L. Wågberg,et al.  Diffusion-induced dimensional changes in papers and fibrillar films: influence of hydrophobicity and fibre-wall cross-linking , 2010 .

[54]  Göran Gellerstedt,et al.  Wood Chemistry and Wood Biotechnology , 2009 .

[55]  Jasna S. Stevanic,et al.  Orientation of the wood polymers in the cell wall of spruce wood fibres , 2009 .

[56]  Akira Isogai,et al.  Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. , 2009, Biomacromolecules.

[57]  Marielle Henriksson,et al.  Cellulose nanopaper structures of high toughness. , 2008, Biomacromolecules.

[58]  B. Hsiao,et al.  The relationship between microstructure and toughness of biaxially oriented semicrystalline polyester films , 2008 .

[59]  Gunnar Henriksson,et al.  An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers , 2007 .

[60]  Akira Isogai,et al.  Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. , 2007, Biomacromolecules.

[61]  Martin A. Hubbe,et al.  BONDING BETWEEN CELLULOSIC FIBERS IN THE ABSENCE AND PRESENCE OF DRY-STRENGTH AGENTS - A REVIEW , 2006 .

[62]  R. Atalla The role of the hemicelluloses in the nanobiology of wood cell walls : a systems theoretic perspective , 2005 .

[63]  T. E. Timell Recent progress in the chemistry of wood hemicelluloses , 1967, Wood Science and Technology.

[64]  A. Jacobs,et al.  Characterization of the molar masses of hemicelluloses from wood and pulps employing size exclusion chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. , 2001, Biomacromolecules.

[65]  D. E. Smith,et al.  Effect of water content and molecular weight on the moisture isotherms and glass transition properties of inulin , 2000 .

[66]  C. Brett Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall. , 2000, International review of cytology.

[67]  A. Jääskeläinen,et al.  Peracids in Kraft Pulp Bleaching: Past, Present, and Future , 1999 .

[68]  R. M. Gohil Morphology–property relationship in oriented PET films: Microstructural reorganization during heat treatment , 1994 .

[69]  J. Albrecht An investigation of the physical-chemical mechanism of selective delignification of wood with peracetic acid , 1971 .

[70]  Ichiro Sakurada,et al.  Experimental determination of the elastic modulus of crystalline regions in oriented polymers , 1962 .