Admissibility via natural dualities

It is shown that admissible clauses and quasi-identities of quasivarieties generated by a single finite algebra, or equivalently, the quasiequational and universal theories of their free algebras on countably infinitely many generators, may be characterized using natural dualities. In particular, axiomatizations are obtained for the admissible clauses and quasi-identities of bounded distributive lattices, Stone algebras, Kleene algebras and lattices, and De Morgan algebras and lattices.

[1]  Nuel D. Belnap,et al.  How a Computer Should Think , 2019, New Essays on Belnap-­Dunn Logic.

[2]  Vladimir V. Rybakov,et al.  A criterion for admissibility of rules in the model system S4 and the intuitionistic logic , 1984 .

[3]  Alexej P. Pynko Implicational classes of De Morgan lattices , 1999, Discret. Math..

[4]  Emil Jerábek,et al.  Bases of Admissible Rules of Lukasiewicz Logic , 2010, J. Log. Comput..

[5]  Mai Gehrke,et al.  Fuzzy Logics Arising From Strict De Morgan Systems , 2003 .

[6]  Vladimir V. Rybakov,et al.  Admissibility of Logical Inference Rules , 2011 .

[7]  G. Grätzer General Lattice Theory , 1978 .

[8]  Petr Cintula,et al.  Admissible rules in the implication-negation fragment of intuitionistic logic , 2010, Ann. Pure Appl. Log..

[9]  P. Lorenzen Einführung in die operative Logik und Mathematik , 1955 .

[10]  Dualities for Stone algebras, double Stone algebras, and relative Stone algebras , 1982 .

[11]  Alfred Horn,et al.  Projective distributive lattices. , 1970 .

[12]  W. M. Beynon Applications of duality in the theory of finitely generated lattice-ordered abelian groups , 1977 .

[13]  Bjarni Jónsson,et al.  Sublattices of a Free Lattice , 1961, Canadian Journal of Mathematics.

[14]  G. Gentzen Untersuchungen über das logische Schließen. II , 1935 .

[15]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[16]  Rosalie Iemhoff,et al.  Intermediate Logics and Visser's Rules , 2005, Notre Dame J. Formal Log..

[17]  George Metcalfe,et al.  Admissibility in Finitely Generated Quasivarieties , 2013, Log. Methods Comput. Sci..

[18]  Simone Bova,et al.  Unification and Projectivity in De Morgan and Kleene Algebras , 2014, Order.

[19]  Silvio Ghilardi,et al.  Best Solving Modal Equations , 2000, Ann. Pure Appl. Log..

[20]  Vladimir V. Rybakov,et al.  Linear Temporal Logic LTL: Basis for Admissible Rules , 2011, J. Log. Comput..

[21]  Emil Jerábek,et al.  Admissible Rules of Modal Logics , 2005, J. Log. Comput..

[22]  J. A. Kalman,et al.  Lattices with involution , 1958 .

[23]  Silvio Ghilardi,et al.  Unification in intuitionistic logic , 1999, Journal of Symbolic Logic.

[24]  W. V. Quine,et al.  Der Minimalkalkul, ein Reduzierter Intutionistischer Formalismus. , 1937 .

[25]  Emil Jerábek Admissible Rules of Lukasiewicz Logic , 2010, J. Log. Comput..

[26]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[27]  D. Gabbay,et al.  Proof Theory for Fuzzy Logics , 2008 .

[28]  Paul Roziere Regles admissibles en calcul propositionnel intuitionniste , 1992 .

[29]  Rosalie Iemho On the Admissible Rules of Intuitionistic Propositional Logic , 2008 .

[30]  S. Lane Categories for the Working Mathematician , 1971 .

[31]  Vladimir V. Rybakov,et al.  Unification in linear temporal logic LTL , 2011, Ann. Pure Appl. Log..

[32]  Hilary A. Priestley,et al.  Representation of Distributive Lattices by means of ordered Stone Spaces , 1970 .

[33]  David M. Clark,et al.  Natural Dualities for the Working Algebraist , 1998 .

[34]  Franco Montagna,et al.  Substructural fuzzy logics , 2007, Journal of Symbolic Logic.

[35]  T. Broadbent Abelian Groups , 1970, Nature.

[36]  Alexandra Silva,et al.  Generalizing determinization from automata to coalgebras , 2013, Log. Methods Comput. Sci..

[37]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[38]  L. Santocanale,et al.  Free μ-lattices , 2000 .

[39]  George Metcalfe,et al.  Admissibility in De Morgan algebras , 2012, Soft Comput..