Inversion-based feedforward design for constrained fractional control systems

In this paper we propose an input-output inversion-based methodology for the synthesis of the feedforward action for a fractional control system in order to achieve a predefined process variable transition from a steady-state value to another. In particular, the feedforward action is implemented either as a signal to be added to the feedback control variable or as a command signal to be applied (instead of the typical step signal) to the closed-loop system. The method allows the minimization of the transition time by taking explicitly into account constraints on the process input an output and their derivatives. Simulation results show the effectiveness of the technique.

[1]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[2]  Ramon Vilanova,et al.  H-infinity Model Matching PID Design for Fractional FOPDT Systems , 2012 .

[3]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[4]  Xavier Moreau,et al.  An overview of the CRONE approach in system analysis, modeling and identification, observation and control , 2008 .

[5]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[6]  Duarte Valério,et al.  Tuning of fractional PID controllers with Ziegler-Nichols-type rules , 2006, Signal Process..

[7]  Juan J. Gude,et al.  New tuning rules for PI and fractional PI controllers , 2009 .

[8]  Ivo Petras,et al.  Fractional-Order Nonlinear Systems , 2011 .

[9]  A. J. Calderón,et al.  Fractional PID Controllers for Industry Application. A Brief Introduction , 2007 .

[10]  YangQuan Chen,et al.  Fractional order control - A tutorial , 2009, 2009 American Control Conference.

[11]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[12]  Alessandro Pisano,et al.  Sliding mode control approaches to the robust regulation of linear multivariable fractional‐order dynamics , 2010 .

[13]  A. J. Calderón,et al.  On Fractional PIλ Controllers: Some Tuning Rules for Robustness to Plant Uncertainties , 2004 .

[14]  Nabil Derbel,et al.  Robust path tracking by preshaping approach designed for third generation CRONE control , 2012, Int. J. Model. Identif. Control..

[15]  YangQuan Chen,et al.  Tuning and auto-tuning of fractional order controllers for industry applications , 2008 .

[16]  Yangquan Chen,et al.  Necessary and sufficient stability condition of fractional-order interval linear systems , 2008, Autom..

[17]  Ivo Petr Stability of Fractional-Order Systems with Rational Orders , 2008 .

[18]  Antonio Visioli,et al.  Tuning rules for optimal PID and fractional-order PID controllers , 2011 .

[19]  Christophe Farges,et al.  On stability of commensurate fractional Order Systems , 2012, Int. J. Bifurc. Chaos.

[20]  Luigi Fortuna,et al.  New results on the synthesis of FO-PID controllers , 2010 .

[21]  Antonio Visioli,et al.  Optimal tuning rules for proportional-integral-derivative and fractional-order proportional-integral-derivative controllers for integral and unstable processes , 2012 .

[23]  W. Marsden I and J , 2012 .

[24]  Mathieu Moze,et al.  LMI stability conditions for fractional order systems , 2010, Comput. Math. Appl..

[25]  Alain Oustaloup,et al.  Flatness control for linear fractional {MIMO} systems: thermal application , 2008 .

[26]  Aurelio Piazzi,et al.  Optimal noncausal set-point regulation of scalar systems , 2001, Autom..

[27]  J. A. Tenreiro Machado,et al.  Tuning of PID Controllers Based on Bode’s Ideal Transfer Function , 2004 .

[28]  A. Banos,et al.  Bode optimal loop shaping with CRONE compensators , 2008, MELECON 2008 - The 14th IEEE Mediterranean Electrotechnical Conference.

[29]  Guido Maione,et al.  Continued fractions approximation of the impulse response of fractional-order dynamic systems , 2008 .

[30]  Manuel Duarte Ortigueira,et al.  A new look into the discrete-time fractional calculus: transform and linear systems , 2013 .

[31]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[32]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[33]  J. Sabatier,et al.  The CRONE aproach: Theoretical developments and major applications , 2006 .

[34]  Y. Chen,et al.  Practical Tuning Rule Development for Fractional Order Proportional and Integral Controllers , 2008 .

[35]  Aurelio Piazzi,et al.  Robust set-point constrained regulation via dynamic inversion† , 2001 .

[36]  Alain Oustaloup,et al.  Frequency-band complex noninteger differentiator: characterization and synthesis , 2000 .

[37]  Duarte Valério,et al.  Introduction to single-input, single-output fractional control , 2011 .

[38]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[39]  高等学校計算数学学報編輯委員会編,et al.  高等学校計算数学学報 = Numerical mathematics , 1979 .