A Duality for Algebras of Lattice-Valued Modal Logic

In this paper, we consider some versions of Fitting's L -valued logic and L -valued modal logic for a finite distributive lattice L . Using the theory of natural dualities, we first obtain a natural duality for algebras of L -valued logic (i.e., L -VL-algebras), which extends Stone duality for Boolean algebras to the L -valued case. Then, based on this duality, we develop a Jonsson-Tarski-style duality for algebras of L -valued modal logic (i.e., L -ML-algebras), which extends Jonsson-Tarski duality for modal algebras to the L -valued case. By applying these dualities, we obtain compactness theorems for L -valued logic and for L -valued modal logic, and the classification of equivalence classes of categories of L -VL-algebras for finite distributive lattices L .

[1]  Marcello M. Bonsangue,et al.  Topological Duality in Semantics , 1998, Electron. Notes Theor. Comput. Sci..

[2]  Alain Connes,et al.  Noncommutative geometry , 1994 .

[3]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[4]  M. Gehrke,et al.  Bounded Lattice Expansions , 2001 .

[5]  G. Hansoul,et al.  A duality for Boolean algebras with operators , 1983 .

[6]  Samson Abramsky,et al.  Domain Theory in Logical Form , 1991, LICS.

[7]  Anil Nerode,et al.  Logical Foundations of Computer Science — Tver '92 , 1992, Lecture Notes in Computer Science.

[8]  Chris Brink,et al.  A paradigm for program semantics - power structures and duality , 2001, Studies in logic, language and information.

[9]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[10]  A. Grothendieck Éléments de géométrie algébrique : I. Le langage des schémas , 1960 .

[11]  Algebraic Study of Lattice-Valued Logic and Lattice-Valued Modal Logic , 2009, ICLA.

[12]  Yde Venema,et al.  A Sahlqvist theorem for distributive modal logic , 2005, Ann. Pure Appl. Log..

[13]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[14]  D. Rees ELÉMENTS DE GÉOMÉTRIE ALGÉBRIQUE–I , 1972 .

[15]  David M. Clark,et al.  Natural Dualities for the Working Algebraist , 1998 .

[16]  Melvin Fitting,et al.  Many-valued modal logics II , 1992 .

[17]  Bruno Teheux,et al.  A Duality for the Algebras of a Łukasiewicz n + 1-valued Modal System , 2007, Stud Logica.

[18]  Stathis Zachos,et al.  Many-Valued Reflexive Autoepistemic Logic , 2000, Log. J. IGPL.

[19]  Giacomo Bonanno On the Logic of Common Belief , 1996, Math. Log. Q..

[20]  Melvin Fitting,et al.  Many-valued modal logics , 1991, Fundam. Informaticae.

[21]  Melvin Fitting,et al.  Many-Valued Non-Monotonic Modal Logics , 1992, LFCS.

[22]  A. Grothendieck,et al.  Le langage des schémas , 1960 .

[23]  M. Stone,et al.  The representation of Boolean algebras , 1938 .

[24]  Melvin Fitting,et al.  Tableaus for many-valued modal logic , 1995, Stud Logica.

[25]  Steve Awodey,et al.  Category Theory , 2006 .

[26]  Lutz Straßburger What is a logic, and what is a proof ? , 2005 .

[27]  Pavlos Peppas,et al.  Weaker Axioms, More Ranges , 2002, Fundam. Informaticae.

[28]  Costas D. Koutras A Catalog ofWeak Many-Valued Modal Axioms and their Corresponding Frame Classes , 2003, J. Appl. Non Class. Logics.

[29]  Costas D. Koutras,et al.  Frame constructions, truth invariance and validity preservation in many-valued modal logic , 2005, J. Appl. Non Class. Logics.

[30]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.