The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background

We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released 11 year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no evidence for a GWB, we place constraints on a population of inspiraling supermassive black hole (SMBH) binaries, a network of decaying cosmic strings, and a primordial GWB. For the first time, we find that the GWB constraints are sensitive to the solar system ephemeris (SSE) model used and that SSE errors can mimic a GWB signal. We developed an approach that bridges systematic SSE differences, producing the first pulsar-timing array (PTA) constraints that are robust against SSE errors. We thus place a 95% upper limit on the GW-strain amplitude of AGWB < 1.45 × 10−15 at a frequency of f = 1 yr−1 for a fiducial f−2/3 power-law spectrum and with interpulsar correlations modeled. This is a factor of ∼2 improvement over the NANOGrav nine-year limit calculated using the same procedure. Previous PTA upper limits on the GWB (as well as their astrophysical and cosmological interpretations) will need revision in light of SSE systematic errors. We use our constraints to characterize the combined influence on the GWB of the stellar mass density in galactic cores, the eccentricity of SMBH binaries, and SMBH–galactic-bulge scaling relationships. We constrain the cosmic-string tension using recent simulations, yielding an SSE-marginalized 95% upper limit of Gμ < 5.3 × 10−11—a factor of ∼2 better than the published NANOGrav nine-year constraints. Our SSE-marginalized 95% upper limit on the energy density of a primordial GWB (for a radiation-dominated post-inflation universe) is ΩGWB(f) h2 < 3.4 × 10−10.

P. S. Ray | V. M. Kaspi | D. R. Lorimer | T. J. W. Lazio | B. Christy | W. M. Folkner | R. S. Park | Z. Arzoumanian | R. Haas | K. Islo | E. Fonseca | P. T. Baker | S. J. Chamberlin | E. A. Huerta | S. Burke-Spolaor | I. H. Stairs | X. Siemens | K. Crowter | L. Levin | A. N. Lommen | M. A. McLaughlin | P. B. Demorest | S. M. Ransom | D. L. Kaplan | J. Luo | C. Ng | D. Stinebring | J. Luo | S. McWilliams | X. Siemens | E. Huerta | R. Haas | P. Baker | S. Chamberlin | N. Cornish | R. Lynch | D. Kaplan | J. Simon | S. Burke-Spolaor | W. Folkner | J. Cordes | Z. Arzoumanian | M. Mclaughlin | J. Swiggum | D. Lorimer | S. Ransom | A. Brazier | D. Nice | J. Ellis | S. Chatterjee | F. Crawford | V. Kaspi | I. Stairs | K. Stovall | W. Zhu | R. Park | T. Lazio | P. Demorest | M. Vallisneri | S. R. Taylor | M. Lam | E. Ferrara | B. Christy | C. Mingarelli | R. Haasteren | I. Stairs | P. Ray | T. Pennucci | Weiwei Zhu | L. Levin | C. Ng | R. Ferdman | R. Spiewak | M. DeCesar | E. Fonseca | M. Jones | A. Lommen | D. Madison | N. Pol | T. Dolch | N. Garver-Daniels | P. Gentile | G. Jones | J. Simon | K. Crowter | S. Vigeland | K. Islo | S. T. McWilliams | F. Crawford | Glenn Jones | J. M. Cordes | G. Jones | M. Vallisneri | D. J. Nice | C. M. F. Mingarelli | A. Brazier | S. Chatterjee | N. J. Cornish | H. Thankful Cromartie | M. DeCesar | T. Dolch | J. A. Ellis | R. D. Ferdman | E. Ferrara | N. Garver-Daniels | P. A. Gentile | J. S. Hazboun | M. L. Jones | M. T. Lam | R. S. Lynch | D. R. Madison | T. T. Pennucci | N. S. Pol | A. Rasskazov | J. Simon | R. Spiewak | D. R. Stinebring | K. Stovall | J. Swiggum | S. Vigeland | W. W. Zhu | H. Cromartie | Megan L. Jones | D. Kaplan | R. Park | J. Hazboun | S. Taylor | J. Cordes | A. Rasskazov | Shami Chatterjee | Alexander Rasskazov | R. V. Haasteren | Glenn Jones | L. Levin | S. Chatterjee | J. Simon | S. Chatterjee

[1]  Stephen R. Taylor,et al.  Noise-marginalized optimal statistic: A robust hybrid frequentist-Bayesian statistic for the stochastic gravitational-wave background in pulsar timing arrays , 2018, Physical Review D.

[2]  Stephen R. Taylor,et al.  The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars , 2017, 1801.01837.

[3]  R. Perna,et al.  Interactions between multiple supermassive black holes in galactic nuclei: a solution to the final parsec problem , 2017, 1709.06501.

[4]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[5]  Islamabad,et al.  Galaxy rotation and supermassive black hole binary evolution , 2017, 1704.03490.

[6]  L. Sampson,et al.  Constraints on the Dynamical Environments of Supermassive Black-Hole Binaries Using Pulsar-Timing Arrays. , 2016, Physical review letters.

[7]  D. Merritt,et al.  Evolution of Binary Supermassive Black Holes in Rotating Nuclei , 2016, 1610.08555.

[8]  M. Vallisneri,et al.  Taming outliers in pulsar-timing data sets with hierarchical likelihoods and Hamiltonian sampling , 2016, 1609.02144.

[9]  L. Lentati,et al.  All correlations must die: Assessing the significance of a stochastic gravitational-wave background in pulsar timing arrays , 2016, 1606.09180.

[10]  D. Merritt,et al.  Evolution Of Massive Black Hole Binaries In Rotating Stellar Nuclei: Implications For Gravitational Wave Detection , 2016, 1606.07484.

[11]  Keitaro Takahashi,et al.  Anisotropies in the gravitational wave background as a probe of the cosmic string network , 2016, 1604.00332.

[12]  M. Bernardi,et al.  Selection bias in dynamically measured supermassive black hole samples: consequences for pulsar timing arrays , 2016, 1603.09348.

[13]  S. Burke-Spolaor,et al.  CONSTRAINTS ON BLACK HOLE/HOST GALAXY CO-EVOLUTION AND BINARY STALLING USING PULSAR TIMING ARRAYS , 2016, 1603.06577.

[14]  Supercomputing,et al.  Selection bias in dynamically measured supermassive black hole samples: its consequences and the quest for the most fundamental relation , 2016, 1603.01276.

[15]  R. Karuppusamy,et al.  High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array , 2016, 1602.08511.

[16]  D. Stinebring,et al.  The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.

[17]  N. Cornish,et al.  Towards robust gravitational wave detection with pulsar timing arrays , 2015, 1512.06829.

[18]  R. Manchester,et al.  A study of spatial correlations in pulsar timing array data , 2015, 1510.02363.

[19]  Anthony N. Lasenby,et al.  Bayesian model selection without evidences: application to the dark energy equation-of-state , 2015, 1506.09024.

[20]  Tristan L. Smith,et al.  Gravitational-wave cosmology across 29 decades in frequency , 2015, 1511.05994.

[21]  T. J. W. Lazio,et al.  ARE WE THERE YET? TIME TO DETECTION OF NANOHERTZ GRAVITATIONAL WAVES BASED ON PULSAR-TIMING ARRAY LIMITS , 2015, 1511.05564.

[22]  Yan Wang,et al.  THE NANOGRAV NINE-YEAR DATA SET: LIMITS ON THE ISOTROPIC STOCHASTIC GRAVITATIONAL WAVE BACKGROUND , 2015, 1508.03024.

[23]  D. Stinebring,et al.  THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS , 2015, 1505.07540.

[24]  Delphine Perrodin,et al.  European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background , 2015, 1504.03692.

[25]  S. McWilliams,et al.  Constraining the Solution to the Last Parsec Problem with Pulsar Timing , 2015, 1503.02662.

[26]  R. W. Ogburn,et al.  Joint Analysis of BICEP2/Keck Array and Planck Data , 2015, 1502.00612.

[27]  L. Price,et al.  Time-domain implementation of the optimal cross-correlation statistic for stochastic gravitational-wave background searches in pulsar timing data , 2014, 1410.8256.

[28]  Neil J. Cornish,et al.  Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches , 2014, 1410.3835.

[29]  R. A. Jacobson,et al.  THE ORBITS OF THE URANIAN SATELLITES AND RINGS, THE GRAVITY FIELD OF THE URANIAN SYSTEM, AND THE ORIENTATION OF THE POLE OF URANUS , 2014 .

[30]  C. Mingarelli,et al.  Effect of small interpulsar distances in stochastic gravitational wave background searches with pulsar timing arrays , 2014, 1408.6840.

[31]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA): galaxy close pairs, mergers and the future fate of stellar mass , 2014, 1408.1476.

[32]  J. Gair,et al.  Mapping gravitational-wave backgrounds using methods from CMB analysis: Application to pulsar timing arrays , 2014, 1406.4664.

[33]  R. Manchester,et al.  Binary supermassive black hole environments diminish the gravitational wave signal in the pulsar timing band , 2014, 1404.5183.

[34]  D. Stinebring,et al.  NANOGrav Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries in Circular Orbits , 2014, 1404.1267.

[35]  K. Olum,et al.  Number of cosmic string loops , 2013, 1309.6637.

[36]  S. McWilliams,et al.  GRAVITATIONAL WAVES AND STALLED SATELLITES FROM MASSIVE GALAXY MERGERS AT z ⩽ 1 , 2012, 1211.5377.

[37]  Y. Levin,et al.  Gravitational-Wave Limits from Pulsar Timing Constrain Supermassive Black Hole Evolution , 2013, Science.

[38]  I. Mandel,et al.  Characterizing gravitational wave stochastic background anisotropy with pulsar timing arrays , 2013, 1306.5394.

[39]  J. Gair,et al.  Searching for anisotropic gravitational-wave backgrounds using pulsar timing arrays , 2013, 1306.5395.

[40]  X. Siemens,et al.  The stochastic background: scaling laws and time to detection for pulsar timing arrays , 2013, 1305.3196.

[41]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[42]  Y. Mellier,et al.  Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.

[43]  A. Verma,et al.  INPOP new release: INPOP10e , 2013, 1301.1510.

[44]  A. Sesana Systematic investigation of the expected gravitational wave signal from supermassive black hole binaries in the pulsar timing band , 2012, 1211.5375.

[45]  Chung-Pei Ma,et al.  REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.

[46]  M. Mclaughlin The North American Nanohertz Observatory for Gravitational Waves , 2013 .

[47]  M. Vallisneri Testing general relativity with gravitational waves: a reality check , 2012, 1207.4759.

[48]  D. Stinebring,et al.  Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.

[49]  A. Sesana,et al.  Origin and Implications of high eccentricities in massive black hole binaries at sub-pc scales , 2011, 1111.3742.

[50]  A. Sesana,et al.  Massive black hole binary plane reorientation in rotating stellar systems , 2011, 1109.3707.

[51]  Agnes Fienga,et al.  The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental Astronomy , 2011 .

[52]  Zhao Wen Constraint on the early Universe by relic gravitational waves: From pulsar timing observations , 2011 .

[53]  A. Sesana,et al.  Massive black hole binary eccentricity in rotating stellar systems , 2011, 1105.0670.

[54]  M. Colpi,et al.  Limiting eccentricity of subparsec massive black hole binaries surrounded by self-gravitating gas discs , 2011, 1104.3868.

[55]  G. Desvignes,et al.  Placing limits on the stochastic gravitational-wave background using European Pulsar Timing Array data , 2011, 1103.0576.

[56]  A. Sesana SELF CONSISTENT MODEL FOR THE EVOLUTION OF ECCENTRIC MASSIVE BLACK HOLE BINARIES IN STELLAR ENVIRONMENTS: IMPLICATIONS FOR GRAVITATIONAL WAVE OBSERVATIONS , 2010, 1006.0730.

[57]  V. Mandic,et al.  Gravitational-wave stochastic background from kinks and cusps on cosmic strings , 2010, 1004.0890.

[58]  A. Sesana,et al.  Gas‐driven massive black hole binaries: signatures in the nHz gravitational wave background , 2010, 1002.0584.

[59]  G. Hobbs The Parkes Pulsar Timing Array , 2009, 1307.2629.

[60]  Z. Haiman,et al.  THE POPULATION OF VISCOSITY- AND GRAVITATIONAL WAVE-DRIVEN SUPERMASSIVE BLACK HOLE BINARIES AMONG LUMINOUS ACTIVE GALACTIC NUCLEI , 2009, 0904.1383.

[61]  L. Price,et al.  Optimal strategies for gravitational wave stochastic background searches in pulsar timing data , 2008, 0809.0701.

[62]  P. Armitage,et al.  Massive black hole binary mergers within subparsec scale gas discs , 2008, 0809.0311.

[63]  Robert A. Jacobson,et al.  THE ORBITS OF THE NEPTUNIAN SATELLITES AND THE ORIENTATION OF THE POLE OF NEPTUNE , 2008 .

[64]  Raúl Rueda,et al.  Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica Support by P. C. Gregory. Hardcover: 486 pages. Cambridge University Press. ISBN: 052184150X, $75.00 , 2007 .

[65]  M. Enoki,et al.  The Effect of Orbital Eccentricity on Gravitational Wave Background Radiation from Supermassive Black Hole Binaries , 2006, astro-ph/0609377.

[66]  D. W. Parcher,et al.  The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data , 2006 .

[67]  R. Manchester,et al.  tempo2, a new pulsar timing package ¿ II. The timing model and precision estimates , 2006, astro-ph/0607664.

[68]  P. Madau,et al.  Interaction of Massive Black Hole Binaries with Their Stellar Environment. I. Ejection of Hypervelocity Stars , 2006, astro-ph/0604299.

[69]  R. Manchester,et al.  TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.

[70]  P. Armitage,et al.  Eccentricity of Supermassive Black Hole Binaries Coalescing from Gas-rich Mergers , 2005, astro-ph/0508493.

[71]  P. Gregory Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica® Support , 2005 .

[72]  Philip C. Gregory,et al.  Bayesian Logical Data Analysis for the Physical Sciences: Acknowledgements , 2005 .

[73]  M. Sakellariadou,et al.  A note on the evolution of cosmic string/superstring networks , 2004, hep-th/0410234.

[74]  P. Gregory Bayesian Logical Data Analysis for the Physical Sciences: Multivariate Gaussian from maximum entropy , 2005 .

[75]  R. Manchester,et al.  psrchive and psrfits: An Open Approach to Radio Pulsar Data Storage and Analysis , 2004, Publications of the Astronomical Society of Australia.

[76]  E. M. Standish,et al.  An approximation to the errors in the planetary ephemerides of the Astronomical Almanac , 2004 .

[77]  P. Madau,et al.  Low-Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies , 2004, astro-ph/0401543.

[78]  S. Godsill On the Relationship Between Markov chain Monte Carlo Methods for Model Uncertainty , 2001 .

[79]  T. Damour,et al.  Gravitational wave bursts from cusps and kinks on cosmic strings , 2001, gr-qc/0104026.

[80]  J. Papaloizou,et al.  THE EVOLUTION OF A SUPERMASSIVE BINARY CAUSED BY AN ACCRETION DISC , 1998, astro-ph/9812198.

[81]  R. Wilcox Introduction to Robust Estimation and Hypothesis Testing , 1997 .

[82]  U. Seljak,et al.  Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.

[83]  M. Kamionkowski,et al.  A Probe of Primordial Gravity Waves and Vorticity , 1996, astro-ph/9609132.

[84]  G. Quinlan The dynamical evolution of massive black hole binaries i , 1996, astro-ph/9706298.

[85]  B. Carlin,et al.  Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .

[86]  S. Mikkola,et al.  Evolution of binaries in the field of light particles and the problem of two black holes , 1992 .

[87]  L. Rezzolla,et al.  Classical and Quantum Gravity , 2002 .

[88]  D. Backer,et al.  Constructing a Pulsar Timing Array , 1990 .

[89]  E. P. S. Shellard,et al.  Cosmic Strings and Other Topological Defects , 1995 .

[90]  A. Vilenkin Cosmic Strings and Domain Walls , 1985 .

[91]  Vachaspati.,et al.  Gravitational radiation from cosmic strings. , 1981, Physical review. D, Particles and fields.

[92]  M. Pollock,et al.  The Effect of Primordially Produced Gravitons upon the Anisotropy of the Cosmological Microwave Background Radiation , 1983 .

[93]  R. Hellings,et al.  Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .

[94]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[95]  M. Rees,et al.  Massive black hole binaries in active galactic nuclei , 1980, Nature.

[96]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[97]  S. Detweiler Pulsar timing measurements and the search for gravitational waves , 1979 .

[98]  L. Grishchuk GRAVITON CREATION IN THE EARLY UNIVERSE , 1977 .

[99]  T W B Kibble,et al.  Topology of cosmic domains and strings , 1976 .

[100]  J. Dickey The Weighted Likelihood Ratio, Linear Hypotheses on Normal Location Parameters , 1971 .

[101]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[102]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .

[103]  G. M. Clemence,et al.  Methods of Celestial Mechanics , 1962 .

[104]  J. Sherman,et al.  Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix , 1950 .