The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background
暂无分享,去创建一个
P. S. Ray | V. M. Kaspi | D. R. Lorimer | T. J. W. Lazio | B. Christy | W. M. Folkner | R. S. Park | Z. Arzoumanian | R. Haas | K. Islo | E. Fonseca | P. T. Baker | S. J. Chamberlin | E. A. Huerta | S. Burke-Spolaor | I. H. Stairs | X. Siemens | K. Crowter | L. Levin | A. N. Lommen | M. A. McLaughlin | P. B. Demorest | S. M. Ransom | D. L. Kaplan | J. Luo | C. Ng | D. Stinebring | J. Luo | S. McWilliams | X. Siemens | E. Huerta | R. Haas | P. Baker | S. Chamberlin | N. Cornish | R. Lynch | D. Kaplan | J. Simon | S. Burke-Spolaor | W. Folkner | J. Cordes | Z. Arzoumanian | M. Mclaughlin | J. Swiggum | D. Lorimer | S. Ransom | A. Brazier | D. Nice | J. Ellis | S. Chatterjee | F. Crawford | V. Kaspi | I. Stairs | K. Stovall | W. Zhu | R. Park | T. Lazio | P. Demorest | M. Vallisneri | S. R. Taylor | M. Lam | E. Ferrara | B. Christy | C. Mingarelli | R. Haasteren | I. Stairs | P. Ray | T. Pennucci | Weiwei Zhu | L. Levin | C. Ng | R. Ferdman | R. Spiewak | M. DeCesar | E. Fonseca | M. Jones | A. Lommen | D. Madison | N. Pol | T. Dolch | N. Garver-Daniels | P. Gentile | G. Jones | J. Simon | K. Crowter | S. Vigeland | K. Islo | S. T. McWilliams | F. Crawford | Glenn Jones | J. M. Cordes | G. Jones | M. Vallisneri | D. J. Nice | C. M. F. Mingarelli | A. Brazier | S. Chatterjee | N. J. Cornish | H. Thankful Cromartie | M. DeCesar | T. Dolch | J. A. Ellis | R. D. Ferdman | E. Ferrara | N. Garver-Daniels | P. A. Gentile | J. S. Hazboun | M. L. Jones | M. T. Lam | R. S. Lynch | D. R. Madison | T. T. Pennucci | N. S. Pol | A. Rasskazov | J. Simon | R. Spiewak | D. R. Stinebring | K. Stovall | J. Swiggum | S. Vigeland | W. W. Zhu | H. Cromartie | Megan L. Jones | D. Kaplan | R. Park | J. Hazboun | S. Taylor | J. Cordes | A. Rasskazov | Shami Chatterjee | Alexander Rasskazov | R. V. Haasteren | Glenn Jones | L. Levin | S. Chatterjee | J. Simon | S. Chatterjee
[1] Stephen R. Taylor,et al. Noise-marginalized optimal statistic: A robust hybrid frequentist-Bayesian statistic for the stochastic gravitational-wave background in pulsar timing arrays , 2018, Physical Review D.
[2] Stephen R. Taylor,et al. The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars , 2017, 1801.01837.
[3] R. Perna,et al. Interactions between multiple supermassive black holes in galactic nuclei: a solution to the final parsec problem , 2017, 1709.06501.
[4] B. A. Boom,et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.
[5] Islamabad,et al. Galaxy rotation and supermassive black hole binary evolution , 2017, 1704.03490.
[6] L. Sampson,et al. Constraints on the Dynamical Environments of Supermassive Black-Hole Binaries Using Pulsar-Timing Arrays. , 2016, Physical review letters.
[7] D. Merritt,et al. Evolution of Binary Supermassive Black Holes in Rotating Nuclei , 2016, 1610.08555.
[8] M. Vallisneri,et al. Taming outliers in pulsar-timing data sets with hierarchical likelihoods and Hamiltonian sampling , 2016, 1609.02144.
[9] L. Lentati,et al. All correlations must die: Assessing the significance of a stochastic gravitational-wave background in pulsar timing arrays , 2016, 1606.09180.
[10] D. Merritt,et al. Evolution Of Massive Black Hole Binaries In Rotating Stellar Nuclei: Implications For Gravitational Wave Detection , 2016, 1606.07484.
[11] Keitaro Takahashi,et al. Anisotropies in the gravitational wave background as a probe of the cosmic string network , 2016, 1604.00332.
[12] M. Bernardi,et al. Selection bias in dynamically measured supermassive black hole samples: consequences for pulsar timing arrays , 2016, 1603.09348.
[13] S. Burke-Spolaor,et al. CONSTRAINTS ON BLACK HOLE/HOST GALAXY CO-EVOLUTION AND BINARY STALLING USING PULSAR TIMING ARRAYS , 2016, 1603.06577.
[14] Supercomputing,et al. Selection bias in dynamically measured supermassive black hole samples: its consequences and the quest for the most fundamental relation , 2016, 1603.01276.
[15] R. Karuppusamy,et al. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array , 2016, 1602.08511.
[16] D. Stinebring,et al. The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.
[17] N. Cornish,et al. Towards robust gravitational wave detection with pulsar timing arrays , 2015, 1512.06829.
[18] R. Manchester,et al. A study of spatial correlations in pulsar timing array data , 2015, 1510.02363.
[19] Anthony N. Lasenby,et al. Bayesian model selection without evidences: application to the dark energy equation-of-state , 2015, 1506.09024.
[20] Tristan L. Smith,et al. Gravitational-wave cosmology across 29 decades in frequency , 2015, 1511.05994.
[21] T. J. W. Lazio,et al. ARE WE THERE YET? TIME TO DETECTION OF NANOHERTZ GRAVITATIONAL WAVES BASED ON PULSAR-TIMING ARRAY LIMITS , 2015, 1511.05564.
[22] Yan Wang,et al. THE NANOGRAV NINE-YEAR DATA SET: LIMITS ON THE ISOTROPIC STOCHASTIC GRAVITATIONAL WAVE BACKGROUND , 2015, 1508.03024.
[23] D. Stinebring,et al. THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS , 2015, 1505.07540.
[24] Delphine Perrodin,et al. European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background , 2015, 1504.03692.
[25] S. McWilliams,et al. Constraining the Solution to the Last Parsec Problem with Pulsar Timing , 2015, 1503.02662.
[26] R. W. Ogburn,et al. Joint Analysis of BICEP2/Keck Array and Planck Data , 2015, 1502.00612.
[27] L. Price,et al. Time-domain implementation of the optimal cross-correlation statistic for stochastic gravitational-wave background searches in pulsar timing data , 2014, 1410.8256.
[28] Neil J. Cornish,et al. Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches , 2014, 1410.3835.
[29] R. A. Jacobson,et al. THE ORBITS OF THE URANIAN SATELLITES AND RINGS, THE GRAVITY FIELD OF THE URANIAN SYSTEM, AND THE ORIENTATION OF THE POLE OF URANUS , 2014 .
[30] C. Mingarelli,et al. Effect of small interpulsar distances in stochastic gravitational wave background searches with pulsar timing arrays , 2014, 1408.6840.
[31] A. Hopkins,et al. Galaxy And Mass Assembly (GAMA): galaxy close pairs, mergers and the future fate of stellar mass , 2014, 1408.1476.
[32] J. Gair,et al. Mapping gravitational-wave backgrounds using methods from CMB analysis: Application to pulsar timing arrays , 2014, 1406.4664.
[33] R. Manchester,et al. Binary supermassive black hole environments diminish the gravitational wave signal in the pulsar timing band , 2014, 1404.5183.
[34] D. Stinebring,et al. NANOGrav Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries in Circular Orbits , 2014, 1404.1267.
[35] K. Olum,et al. Number of cosmic string loops , 2013, 1309.6637.
[36] S. McWilliams,et al. GRAVITATIONAL WAVES AND STALLED SATELLITES FROM MASSIVE GALAXY MERGERS AT z ⩽ 1 , 2012, 1211.5377.
[37] Y. Levin,et al. Gravitational-Wave Limits from Pulsar Timing Constrain Supermassive Black Hole Evolution , 2013, Science.
[38] I. Mandel,et al. Characterizing gravitational wave stochastic background anisotropy with pulsar timing arrays , 2013, 1306.5394.
[39] J. Gair,et al. Searching for anisotropic gravitational-wave backgrounds using pulsar timing arrays , 2013, 1306.5395.
[40] X. Siemens,et al. The stochastic background: scaling laws and time to detection for pulsar timing arrays , 2013, 1305.3196.
[41] L. Ho,et al. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.
[42] Y. Mellier,et al. Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.
[43] A. Verma,et al. INPOP new release: INPOP10e , 2013, 1301.1510.
[44] A. Sesana. Systematic investigation of the expected gravitational wave signal from supermassive black hole binaries in the pulsar timing band , 2012, 1211.5375.
[45] Chung-Pei Ma,et al. REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.
[46] M. Mclaughlin. The North American Nanohertz Observatory for Gravitational Waves , 2013 .
[47] M. Vallisneri. Testing general relativity with gravitational waves: a reality check , 2012, 1207.4759.
[48] D. Stinebring,et al. Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.
[49] A. Sesana,et al. Origin and Implications of high eccentricities in massive black hole binaries at sub-pc scales , 2011, 1111.3742.
[50] A. Sesana,et al. Massive black hole binary plane reorientation in rotating stellar systems , 2011, 1109.3707.
[51] Agnes Fienga,et al. The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental Astronomy , 2011 .
[52] Zhao Wen. Constraint on the early Universe by relic gravitational waves: From pulsar timing observations , 2011 .
[53] A. Sesana,et al. Massive black hole binary eccentricity in rotating stellar systems , 2011, 1105.0670.
[54] M. Colpi,et al. Limiting eccentricity of subparsec massive black hole binaries surrounded by self-gravitating gas discs , 2011, 1104.3868.
[55] G. Desvignes,et al. Placing limits on the stochastic gravitational-wave background using European Pulsar Timing Array data , 2011, 1103.0576.
[56] A. Sesana. SELF CONSISTENT MODEL FOR THE EVOLUTION OF ECCENTRIC MASSIVE BLACK HOLE BINARIES IN STELLAR ENVIRONMENTS: IMPLICATIONS FOR GRAVITATIONAL WAVE OBSERVATIONS , 2010, 1006.0730.
[57] V. Mandic,et al. Gravitational-wave stochastic background from kinks and cusps on cosmic strings , 2010, 1004.0890.
[58] A. Sesana,et al. Gas‐driven massive black hole binaries: signatures in the nHz gravitational wave background , 2010, 1002.0584.
[59] G. Hobbs. The Parkes Pulsar Timing Array , 2009, 1307.2629.
[60] Z. Haiman,et al. THE POPULATION OF VISCOSITY- AND GRAVITATIONAL WAVE-DRIVEN SUPERMASSIVE BLACK HOLE BINARIES AMONG LUMINOUS ACTIVE GALACTIC NUCLEI , 2009, 0904.1383.
[61] L. Price,et al. Optimal strategies for gravitational wave stochastic background searches in pulsar timing data , 2008, 0809.0701.
[62] P. Armitage,et al. Massive black hole binary mergers within subparsec scale gas discs , 2008, 0809.0311.
[63] Robert A. Jacobson,et al. THE ORBITS OF THE NEPTUNIAN SATELLITES AND THE ORIENTATION OF THE POLE OF NEPTUNE , 2008 .
[64] Raúl Rueda,et al. Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica Support by P. C. Gregory. Hardcover: 486 pages. Cambridge University Press. ISBN: 052184150X, $75.00 , 2007 .
[65] M. Enoki,et al. The Effect of Orbital Eccentricity on Gravitational Wave Background Radiation from Supermassive Black Hole Binaries , 2006, astro-ph/0609377.
[66] D. W. Parcher,et al. The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data , 2006 .
[67] R. Manchester,et al. tempo2, a new pulsar timing package ¿ II. The timing model and precision estimates , 2006, astro-ph/0607664.
[68] P. Madau,et al. Interaction of Massive Black Hole Binaries with Their Stellar Environment. I. Ejection of Hypervelocity Stars , 2006, astro-ph/0604299.
[69] R. Manchester,et al. TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.
[70] P. Armitage,et al. Eccentricity of Supermassive Black Hole Binaries Coalescing from Gas-rich Mergers , 2005, astro-ph/0508493.
[71] P. Gregory. Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica® Support , 2005 .
[72] Philip C. Gregory,et al. Bayesian Logical Data Analysis for the Physical Sciences: Acknowledgements , 2005 .
[73] M. Sakellariadou,et al. A note on the evolution of cosmic string/superstring networks , 2004, hep-th/0410234.
[74] P. Gregory. Bayesian Logical Data Analysis for the Physical Sciences: Multivariate Gaussian from maximum entropy , 2005 .
[75] R. Manchester,et al. psrchive and psrfits: An Open Approach to Radio Pulsar Data Storage and Analysis , 2004, Publications of the Astronomical Society of Australia.
[76] E. M. Standish,et al. An approximation to the errors in the planetary ephemerides of the Astronomical Almanac , 2004 .
[77] P. Madau,et al. Low-Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies , 2004, astro-ph/0401543.
[78] S. Godsill. On the Relationship Between Markov chain Monte Carlo Methods for Model Uncertainty , 2001 .
[79] T. Damour,et al. Gravitational wave bursts from cusps and kinks on cosmic strings , 2001, gr-qc/0104026.
[80] J. Papaloizou,et al. THE EVOLUTION OF A SUPERMASSIVE BINARY CAUSED BY AN ACCRETION DISC , 1998, astro-ph/9812198.
[81] R. Wilcox. Introduction to Robust Estimation and Hypothesis Testing , 1997 .
[82] U. Seljak,et al. Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.
[83] M. Kamionkowski,et al. A Probe of Primordial Gravity Waves and Vorticity , 1996, astro-ph/9609132.
[84] G. Quinlan. The dynamical evolution of massive black hole binaries i , 1996, astro-ph/9706298.
[85] B. Carlin,et al. Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .
[86] S. Mikkola,et al. Evolution of binaries in the field of light particles and the problem of two black holes , 1992 .
[87] L. Rezzolla,et al. Classical and Quantum Gravity , 2002 .
[88] D. Backer,et al. Constructing a Pulsar Timing Array , 1990 .
[89] E. P. S. Shellard,et al. Cosmic Strings and Other Topological Defects , 1995 .
[90] A. Vilenkin. Cosmic Strings and Domain Walls , 1985 .
[91] Vachaspati.,et al. Gravitational radiation from cosmic strings. , 1981, Physical review. D, Particles and fields.
[92] M. Pollock,et al. The Effect of Primordially Produced Gravitons upon the Anisotropy of the Cosmological Microwave Background Radiation , 1983 .
[93] R. Hellings,et al. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .
[94] Andrei Linde,et al. A new inflationary universe scenario: A possible solution of the horizon , 1982 .
[95] M. Rees,et al. Massive black hole binaries in active galactic nuclei , 1980, Nature.
[96] A. Starobinsky,et al. A new type of isotropic cosmological models without singularity , 1980 .
[97] S. Detweiler. Pulsar timing measurements and the search for gravitational waves , 1979 .
[98] L. Grishchuk. GRAVITON CREATION IN THE EARLY UNIVERSE , 1977 .
[99] T W B Kibble,et al. Topology of cosmic domains and strings , 1976 .
[100] J. Dickey. The Weighted Likelihood Ratio, Linear Hypotheses on Normal Location Parameters , 1971 .
[101] P. C. Peters. Gravitational Radiation and the Motion of Two Point Masses , 1964 .
[102] J. Mathews,et al. Gravitational radiation from point masses in a Keplerian orbit , 1963 .
[103] G. M. Clemence,et al. Methods of Celestial Mechanics , 1962 .
[104] J. Sherman,et al. Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix , 1950 .