Brain organization and the origin of insects: an assessment

Within the Arthropoda, morphologies of neurons, the organization of neurons within neuropils and the occurrence of neuropils can be highly conserved and provide robust characters for phylogenetic analyses. The present paper reviews some features of insect and crustacean brains that speak against an entomostracan origin of the insects, contrary to received opinion. Neural organization in brain centres, comprising olfactory pathways, optic lobes and a central neuropil that is thought to play a cardinal role in multi-joint movement, support affinities between insects and malacostracan crustaceans.

[1]  M. Rosenfeld Zur vergleichenden Anatomie des Musculus tibialis posticus , 1898, Anatomische Hefte.

[2]  N. Strausfeld A brain region in insects that supervises walking. , 1999, Progress in brain research.

[3]  Santiago Ramón y Cajal,et al.  Contribución al conocimiento de los centros nerviosos de los insectos , 1915 .

[4]  Sebastian Kirschner,et al.  Dual olfactory pathway in the honeybee, Apis mellifera , 2006, The Journal of comparative neurology.

[5]  J. Viñuela,et al.  Testosterone-mediated trade-offs in the old age: a new approach to the immunocompetence handicap and carotenoid-based sexual signalling , 2009, Proceedings of the Royal Society B: Biological Sciences.

[6]  R. Benton On the ORigin of smell: odorant receptors in insects , 2006, Cellular and Molecular Life Sciences CMLS.

[7]  L. Michael Romero,et al.  Stress and translocation: alterations in the stress physiology of translocated birds , 2009, Proceedings of the Royal Society B: Biological Sciences.

[8]  Leslie B. Vosshall,et al.  Genetic and Functional Subdivision of the Drosophila Antennal Lobe , 2005, Current Biology.

[9]  G. Boncoraglio,et al.  Fine-tuned modulation of competitive behaviour according to kinship in barn swallow nestlings , 2009, Proceedings of the Royal Society B: Biological Sciences.

[10]  N. Strausfeld The evolution of crustacean and insect optic lobes and the origins of chiasmata , 2005 .

[11]  J. Armstrong,et al.  Juvenile salmon with high standard metabolic rates have higher energy costs but can process meals faster , 2009, Proceedings of the Royal Society B: Biological Sciences.

[12]  S. Cajal Recollections of my life , 1989 .

[13]  R. Sandeman,et al.  Morphology of the Brain of Crayfish, Crabs, and Spiny Lobsters: A Common Nomenclature for Homologous Structures. , 1992, The Biological bulletin.

[14]  A. Koeppen The Brain Atlas, third edition, T.A. Woolsey, J. Hanaway, M.H. Gado (Eds.). Wiley, Hoboken, New Jersey, USA (2008), 254 pages, US$ 60, ISBN: 978-0-470-08476-2 , 2008 .

[15]  B. Beltz,et al.  Integration and segregation of inputs to higher‐order neuropils of the crayfish brain , 2005, The Journal of comparative neurology.

[16]  J. M. Sullivan,et al.  Neural pathways connecting the deutocerebrum and lateral protocerebrum in the brains of decapod crustaceans , 2001, The Journal of comparative neurology.

[17]  J. Shultz,et al.  Phylogenetic analysis of arthropods using two nuclear protein–encoding genes supports a crustacean + hexapod clade , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  M. Utting,et al.  Central complex in the brain of crayfish and its possible homology with that of insects , 2000, The Journal of comparative neurology.

[19]  S. M. Morton,et al.  Mechanisms of cerebellar gait ataxia , 2008, The Cerebellum.

[20]  G. Boyan,et al.  Building the central complex of the grasshopper Schistocerca gregaria: temporal topology organizes the neuroarchitecture of the w, x, y, z tracts , 2005 .

[21]  J. Merilä,et al.  Habitat-dependent and -independent plastic responses to social environment in the nine-spined stickleback (Pungitius pungitius) brain , 2009, Proceedings of the Royal Society B: Biological Sciences.

[22]  N. Strausfeld,et al.  Organization of optic lobes that support motion detection in a semiterrestrial crab , 2005, The Journal of comparative neurology.

[23]  M. Heisenberg Mushroom body memoir: from maps to models , 2003, Nature Reviews Neuroscience.

[24]  NEUROBIOLOGICAL CONSTRAINTS AND FLY SYSTEMATICS: HOW DIFFERENT TYPES OF NEURAL CHARACTERS CAN CONTRIBUTE TO A HIGHER LEVEL DIPTERAN PHYLOGENY , 2000, Evolution; international journal of organic evolution.

[25]  I. Lovette,et al.  Disease-mediated inbreeding depression in a large, open population of cooperative crows , 2009, Proceedings of the Royal Society B: Biological Sciences.

[26]  J. Bacon,et al.  A good eye for arthropod evolution , 1994, BioEssays : news and reviews in molecular, cellular and developmental biology.

[27]  D. Grimaldi,et al.  Evolution of the insects , 2005 .

[28]  J. Hildebrand,et al.  Anatomy of antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta , 1988, Cell and Tissue Research.

[29]  L. Chittka,et al.  Predator crypsis enhances behaviourally mediated indirect effects on plants by altering bumblebee foraging preferences , 2009, Proceedings of the Royal Society B: Biological Sciences.

[30]  E. Wapstra,et al.  Female aggression predicts mode of paternity acquisition in a social lizard , 2009, Proceedings of the Royal Society B: Biological Sciences.

[31]  J. J. Kollros The development of the optic lobes in the frog. I. The effects of unilateral enucleation in embryonic stages , 1953 .

[32]  B. Ache,et al.  Immunocytochemical analysis of glomerular regionalization and neuronal diversity in the olfactory deutocerebrum of the spiny lobster , 1997, Cell and Tissue Research.

[33]  D. Cesarini,et al.  Is there an adverse effect of sons on maternal longevity? , 2009, Proceedings of the Royal Society B: Biological Sciences.

[34]  J. L. Williams,et al.  Anatomical studies of the insect central nervous system: A ground‐plan of the midbrain and an introduction to the central complex in the locust, Schistocerca gregaria (Orthoptera) , 2009 .

[35]  C. Labandeira,et al.  Early Insect Diversification: Evidence from a Lower Devonian Bristletail from Québec , 1988, Science.

[36]  Stanley Heinze,et al.  Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect , 2007, Science.

[37]  K. Holsinger,et al.  Proximity is not a proxy for parentage in an animal-dispersed Neotropical canopy palm , 2009, Proceedings of the Royal Society B: Biological Sciences.

[38]  C. J. Clark,et al.  Flight costs of long, sexually selected tails in hummingbirds , 2009, Proceedings of the Royal Society B: Biological Sciences.

[39]  S. R. Shaw,et al.  Primitive, crustacean-like state of blood-brain barrier in the eye of the apterygote insect Petrobius (Archaeognatha) determined from uptake of fluorescent tracers. , 1999, Journal of neurobiology.

[40]  M. Doebeli,et al.  Spatial structure leads to ecological breakdown and loss of diversity , 2009, Proceedings of the Royal Society B: Biological Sciences.

[41]  Irina Sinakevitch,et al.  Ground plan of the insect mushroom body: Functional and evolutionary implications , 2009, The Journal of comparative neurology.

[42]  N. Elsner,et al.  Pharmacological brain stimulation releases elaborate stridulatory behaviour in gomphocerine grasshoppers – conclusions for the organization of the central nervous control , 2001, Journal of Comparative Physiology A.

[43]  M. Keeling,et al.  Implications of vaccination and waning immunity , 2009, Proceedings of the Royal Society B: Biological Sciences.

[44]  G. Boyan,et al.  Building the central complex of the grasshopper Schistocerca gregaria: axons pioneering the w, x, y, z tracts project onto the primary commissural fascicle of the brain. , 2008, Arthropod structure & development.

[45]  M. Bate,et al.  The development of Drosophila melanogaster , 1993 .

[46]  M. Naguib,et al.  Sex-specific timing of mate searching and territory prospecting in the nightingale: nocturnal life of females , 2009, Proceedings of the Royal Society B: Biological Sciences.

[47]  B. Ache,et al.  Antennular projections to the midbrain of the spiny lobster. III. Central arborizations of motoneurons , 1993, The Journal of comparative neurology.

[48]  Kei Ito,et al.  Clonal analysis of Drosophila antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage , 2008, Development.

[49]  S. Munch,et al.  Reversal of evolutionary downsizing caused by selective harvest of large fish , 2009, Proceedings of the Royal Society B: Biological Sciences.

[50]  B. Ache,et al.  Antennular projections to the midbrain of the spiny lobster. II. Sensory innervation of the olfactory lobe , 1992, The Journal of comparative neurology.

[51]  G. Boxshall The evolution of arthropod limbs , 2004, Biological reviews of the Cambridge Philosophical Society.

[52]  N. Strausfeld,et al.  Visual Motion-Detection Circuits in Flies: Small-Field Retinotopic Elements Responding to Motion Are Evolutionarily Conserved across Taxa , 1996, The Journal of Neuroscience.

[53]  Nicholas J. Strausfeld,et al.  Neuroarchitectures Serving Compound Eyes of Crustacea and Insects , 1981 .

[54]  J. Mallatt,et al.  Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. , 2006, Molecular phylogenetics and evolution.

[55]  N. Strausfeld,et al.  Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa , 2003, The Journal of comparative neurology.

[56]  JOSEPH JOHN Murphy Origin of Insects , 1872, Nature.

[57]  G. Boyan,et al.  Fascicle switching generates a chiasmal neuroarchitecture in the embryonic central body of the grasshopper Schistocerca gregaria. , 2008, Arthropod structure & development.

[58]  S. Harzsch,et al.  A brain atlas of Godzilliognomus frondosus Yager, 1989 (Remipedia, Godzilliidae) and comparison with the brain of Speleonectes tulumensis Yager, 1987 (Remipedia, Speleonectidae): implications for arthropod relationships , 2005 .

[59]  R. Ritzmann,et al.  Descending control of turning behavior in the cockroach, Blaberus discoidalis , 2007, Journal of Comparative Physiology A.

[60]  R. Strauss The central complex and the genetic dissection of locomotor behaviour , 2002, Current Opinion in Neurobiology.

[61]  W. Dohle Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name 'Tetraconata' for the monophyletic unit Crustacea + Hexapoda , 2001 .

[62]  Sue C Kinnamon,et al.  Amiloride-sensitive channels in type I fungiform taste cells in mouse , 2008, BMC Neuroscience.

[63]  J. Shultz,et al.  Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic , 2005, Proceedings of the Royal Society B: Biological Sciences.

[64]  John G Hildebrand,et al.  Olfactory systems: common design, uncommon origins? , 1999, Current Opinion in Neurobiology.

[65]  S. Harzsch,et al.  Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell , 2008, BMC Neuroscience.

[66]  J. Olesen,et al.  Limb ontogeny and trunk segmentation in Nebalia species (Crustacea, Malacostraca, Leptostraca) , 2000, Zoomorphology.

[67]  H. Eisthen Why Are Olfactory Systems of Different Animals So Similar? , 2002, Brain, Behavior and Evolution.

[68]  U. Homberg,et al.  Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea+Hexapoda) , 2005 .

[69]  M. Sanders Handbook of Sensory Physiology , 1975 .

[70]  N. Strausfeld,et al.  Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem lineage , 2006, Proceedings of the Royal Society B: Biological Sciences.

[71]  N. Strausfeld,et al.  Common design in a unique midline neuropil in the brains of arthropods. , 2002, Arthropod structure & development.

[72]  S. Farris Structural, Functional and Developmental Convergence of the Insect Mushroom Bodies with Higher Brain Centers of Vertebrates , 2008, Brain, Behavior and Evolution.

[73]  M. Heisenberg,et al.  Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster , 1999, Journal of Comparative Physiology A.

[74]  N. Strausfeld,et al.  Evolution, discovery, and interpretations of arthropod mushroom bodies. , 1998, Learning & memory.

[75]  E. Willerslev,et al.  The Origin of Insects , 2006, Science.