Convexity and star-shapedness of matricial range

Let ${\bf A} = (A_1, \dots, A_m)$ be an $m$-tuple of bounded linear operators acting on a Hilbert space ${\cal H}$. Their joint $(p,q)$-matricial range $\Lambda_{p,q}({\bf A})$ is the collection of $(B_1, \dots, B_m) \in {\bf M}_q^m$, where $I_p\otimes B_j$ is a compression of $A_j$ on a $pq$-dimensional subspace. This definition covers various kinds of generalized numerical ranges for different values of $p,q,m$. In this paper, it is shown that $\Lambda_{p,q}({\bf A})$ is star-shaped if the dimension of $\cal H$ is sufficiently large. If $\dim {\cal H}$ is infinite, we extend the definition of $\Lambda_{p,q}({\bf A})$ to $\Lambda_{\infty,q}({\bf A})$ consisting of $(B_1, \dots, B_m) \in {\bf M}_q^m$ such that $I_\infty \otimes B_j$ is a compression of $A_j$ on a closed subspace of ${\cal H}$, and consider the joint essential $(p,q)$-matricial range $$\Lambda^{ess}_{p,q}({\bf A}) = \bigcap \{ {\bf cl}(\Lambda_{p,q}(A_1+F_1, \dots, A_m+F_m)): F_1, \dots, F_m \hbox{ are compact operators}\}.$$ Both sets are shown to be convex, and the latter one is always non-empty and compact.

[1]  W. Arveson Subalgebras ofC*-algebras II , 1972 .

[2]  Chi-Kwong Li,et al.  Convexity of the Joint Numerical Range , 1999, SIAM J. Matrix Anal. Appl..

[3]  Nam-Kiu Tsing,et al.  On the kth matrix numerical range , 1991 .

[4]  H. Tverberg A Generalization of Radon's Theorem , 1966 .

[5]  LI CHI-KWONG,et al.  GENERALIZED NUMERICAL RANGES AND QUANTUM ERROR CORRECTION , 2009 .

[6]  Karol Zyczkowski,et al.  Quantum error correcting codes from the compression formalism , 2005, quant-ph/0511101.

[7]  F. Hausdorff Der Wertvorrat einer Bilinearform , 1919 .

[8]  N. Tsing,et al.  An extension of the Hausdorff-Toeplitz theorem on the numerical range , 1983 .

[9]  Chi-Kwong Li,et al.  The joint essential numerical range of operators: convexity and related results , 2009 .

[10]  P. Y. Wu,et al.  Matricial Ranges of Quadratic Operators , 1999 .

[11]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[12]  Philip Maher,et al.  A Hilbert space problem book (2nd edition) , by P. R. Halmos. Pp 369. £43. 1982. ISBN 0-387-90685-1 (Springer) , 1989 .

[13]  Mao-Ting Chien,et al.  Reduction of joint c-numerical ranges , 2014, Appl. Math. Comput..

[14]  R. C. Thompson,et al.  Research problem the matrix numerical range , 1987 .

[15]  Chi-Kwong Li,et al.  Generalized interlacing inequalities , 2012 .

[16]  D. Farenick Matrical extensions of the numerical range: a brief survey , 1993 .

[17]  Chi-Kwong Li,et al.  Some Convexity Features Associated with Unitary Orbits , 2003, Canadian Journal of Mathematics.

[18]  A. L. Tits,et al.  m-form numerical range and the computation of the structured singular value , 1988 .

[19]  V. Müller The joint essential numerical range, compact perturbations, and the Olsen problem , 2010 .

[20]  K. Gustafson,et al.  Numerical Range: The Field Of Values Of Linear Operators And Matrices , 1996 .

[21]  Chi-Kwong Li,et al.  Condition for the higher rank numerical range to be non-empty , 2007 .

[22]  O. Toeplitz Das algebraische Analogon zu einem Satze von Fejér , 1918 .

[23]  P. Halmos A Hilbert Space Problem Book , 1967 .