Convexity and star-shapedness of matricial range
暂无分享,去创建一个
Chi-Kwong Li | Yiu-Tung Poon | Nung-Sing Sze | Chi-Kwong Li | Y. Poon | Nung-Sing Sze | Pan-shun Lau | Pan-Shun Lau
[1] W. Arveson. Subalgebras ofC*-algebras II , 1972 .
[2] Chi-Kwong Li,et al. Convexity of the Joint Numerical Range , 1999, SIAM J. Matrix Anal. Appl..
[3] Nam-Kiu Tsing,et al. On the kth matrix numerical range , 1991 .
[4] H. Tverberg. A Generalization of Radon's Theorem , 1966 .
[5] LI CHI-KWONG,et al. GENERALIZED NUMERICAL RANGES AND QUANTUM ERROR CORRECTION , 2009 .
[6] Karol Zyczkowski,et al. Quantum error correcting codes from the compression formalism , 2005, quant-ph/0511101.
[7] F. Hausdorff. Der Wertvorrat einer Bilinearform , 1919 .
[8] N. Tsing,et al. An extension of the Hausdorff-Toeplitz theorem on the numerical range , 1983 .
[9] Chi-Kwong Li,et al. The joint essential numerical range of operators: convexity and related results , 2009 .
[10] P. Y. Wu,et al. Matricial Ranges of Quadratic Operators , 1999 .
[11] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[12] Philip Maher,et al. A Hilbert space problem book (2nd edition) , by P. R. Halmos. Pp 369. £43. 1982. ISBN 0-387-90685-1 (Springer) , 1989 .
[13] Mao-Ting Chien,et al. Reduction of joint c-numerical ranges , 2014, Appl. Math. Comput..
[14] R. C. Thompson,et al. Research problem the matrix numerical range , 1987 .
[15] Chi-Kwong Li,et al. Generalized interlacing inequalities , 2012 .
[16] D. Farenick. Matrical extensions of the numerical range: a brief survey , 1993 .
[17] Chi-Kwong Li,et al. Some Convexity Features Associated with Unitary Orbits , 2003, Canadian Journal of Mathematics.
[18] A. L. Tits,et al. m-form numerical range and the computation of the structured singular value , 1988 .
[19] V. Müller. The joint essential numerical range, compact perturbations, and the Olsen problem , 2010 .
[20] K. Gustafson,et al. Numerical Range: The Field Of Values Of Linear Operators And Matrices , 1996 .
[21] Chi-Kwong Li,et al. Condition for the higher rank numerical range to be non-empty , 2007 .
[22] O. Toeplitz. Das algebraische Analogon zu einem Satze von Fejér , 1918 .
[23] P. Halmos. A Hilbert Space Problem Book , 1967 .