Weight-preserving simulated tempering

Simulated tempering is a popular method of allowing MCMC algorithms to move between modes of a multimodal target density $$\pi $$ π . One problem with simulated tempering for multimodal targets is that the weights of the various modes change for different inverse-temperature values, sometimes dramatically so. In this paper, we provide a fix to overcome this problem, by adjusting the mode weights to be preserved (i.e. constant) over different inverse-temperature settings. We then apply simulated tempering algorithms to multimodal targets using our mode weight correction. We present simulations in which our weight-preserving algorithm mixes between modes much more successfully than traditional tempering algorithms. We also prove a diffusion limit for an version of our algorithm, which shows that under appropriate assumptions, our algorithm mixes in time $$O(d [\log d]^2)$$ O ( d [ log d ] 2 ) .

[1]  S. Kou,et al.  Equi-energy sampler with applications in statistical inference and statistical mechanics , 2005, math/0507080.

[2]  Antoine Lejay On the constructions of the skew Brownian motion , 2006 .

[3]  G. Behrens Mode jumping in MCMC , 2008 .

[4]  Nicholas Tawn Towards optimality of the parallel tempering algorithm , 2017 .

[5]  H. Tjelmeland,et al.  Mode Jumping Proposals in MCMC , 2001 .

[6]  D. Landau,et al.  Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  C. Predescu,et al.  The incomplete beta function law for parallel tempering sampling of classical canonical systems. , 2003, The Journal of chemical physics.

[8]  D. Woodard,et al.  Conditions for Torpid Mixing of Parallel and Simulated Tempering on Multimodal Distributions , 2022 .

[9]  Jun S. Liu,et al.  The Wang-Landau algorithm in general state spaces: Applications and convergence analysis , 2010 .

[10]  Gareth O. Roberts,et al.  Minimising MCMC variance via diffusion limits, with an application to simulated tempering , 2014 .

[11]  Nicholas G. Tawn,et al.  Optimal Temperature Spacing for Regionally Weight-preserving Tempering , 2018, 1810.05845.

[12]  J. Rosenthal,et al.  Optimal scaling of discrete approximations to Langevin diffusions , 1998 .

[13]  Eric Moulines,et al.  Adaptive parallel tempering algorithm , 2012, 1205.1076.

[14]  T. Liggett Continuous Time Markov Processes: An Introduction , 2010 .

[15]  Radford M. Neal Sampling from multimodal distributions using tempered transitions , 1996, Stat. Comput..

[16]  D. Woodard,et al.  Sufficient Conditions for Torpid Mixing of Parallel and Simulated Tempering , 2009 .

[17]  Jeffrey S. Rosenthal,et al.  Optimal scaling of Metropolis algorithms: Heading toward general target distributions , 2008 .

[18]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[19]  Jim Pitman,et al.  On Walsh's Brownian motions , 1989 .

[20]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[21]  Dana Randall,et al.  Simulated Tempering and Swapping on Mean-Field Models , 2015, Journal of Statistical Physics.

[22]  D. Kofke,et al.  Selection of temperature intervals for parallel-tempering simulations. , 2005, The Journal of chemical physics.

[23]  W. Krauth Cluster Monte Carlo algorithms , 2003, cond-mat/0311623.

[24]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[25]  H. Robbins A Stochastic Approximation Method , 1951 .

[26]  E. Perkins,et al.  9. Markov Processes, Characterization and Convergence , 1988 .

[27]  D. Woodard,et al.  Conditions for Rapid and Torpid Mixing of Parallel and Simulated Tempering on Multimodal Distributions , 2009, 0906.2341.

[28]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[29]  Jun S. Liu,et al.  The Wang-Landau Algorithm for Monte Carlo computation in general state spaces , 2005 .

[30]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[31]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[32]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[33]  Gareth O. Roberts,et al.  Towards optimal scaling of metropolis-coupled Markov chain Monte Carlo , 2011, Stat. Comput..