Local Existence for the Dumbbell Model of Polymeric Fluids

Abstract A local existence and uniqueness theorem is proved for a micro-macro model for polymeric fluid, as well as the property of the solution. The polymer stress tensor is given by an integral which involves the solution of a diffusion equation, the coefficient of this diffusion equation depends on the gradient of the solution of the Navier–Stokes equation.

[1]  Michael Renardy,et al.  An existence theorem for model equations resulting from kinetic theories of polymer solutions , 1991 .

[2]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[3]  Weinan E,et al.  Convergence of a Stochastic Method for the Modeling of Polymeric Fluids , 2002 .

[4]  Juan J. de Pablo,et al.  A method for multiscale simulation of flowing complex fluids , 2002 .

[5]  GLOBAL SOLUTIONS FOR SOME OLDROYD MODELS OF NON-NEWTONIAN FLOWS , 2000 .

[6]  Benjamin Jourdain,et al.  Existence of solution for a micro–macro model of polymeric fluid: the FENE model , 2004 .

[7]  van den Bhaa Ben Brule,et al.  Simulation of viscoelastic flows using Brownian configuration fields , 1997 .

[8]  Benjamin Jourdain,et al.  NUMERICAL ANALYSIS OF MICRO–MACRO SIMULATIONS OF POLYMERIC FLUID FLOWS: A SIMPLE CASE , 2002 .

[9]  Pingwen Zhang,et al.  Well-Posedness for the Dumbbell Model of Polymeric Fluids , 2004 .

[10]  H. C. Öttinger,et al.  CONNFFESSIT Approach for Solving a Two-Dimensional Viscoelastic Fluid Problem , 1995 .

[11]  G. Fredrickson The theory of polymer dynamics , 1996 .

[12]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[13]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[14]  J. Saut,et al.  Existence results for the flow of viscoelastic fluids with a differential constitutive law , 1990 .

[15]  Curtiss,et al.  Dynamics of Polymeric Liquids , .

[16]  Michael Renardy,et al.  Local existence of solutions of the Dirichlet initial-boundary value problem for incompressible hypoelastic materials , 1990 .

[17]  H. C. Öttinger,et al.  Calculation of viscoelastic flow using molecular models: the connffessit approach , 1993 .