暂无分享,去创建一个
[1] Maxim A. Olshanskii,et al. An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..
[2] Maxim A. Olshanskii,et al. An Augmented Lagrangian Approach to Linearized Problems in Hydrodynamic Stability , 2008, SIAM J. Sci. Comput..
[3] M. Arroyo,et al. Modelling fluid deformable surfaces with an emphasis on biological interfaces , 2018, Journal of Fluid Mechanics.
[4] Lawrence Mitchell,et al. A Reynolds-robust preconditioner for the Scott-Vogelius discretization of the stationary incompressible Navier-Stokes equations , 2020, The SMAI journal of computational mathematics.
[5] G. Rapin,et al. Efficient augmented Lagrangian‐type preconditioning for the Oseen problem using Grad‐Div stabilization , 2013 .
[6] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[7] Arnold Reusken,et al. Finite Element Error Analysis of Surface Stokes Equations in Stream Function Formulation , 2019, ArXiv.
[8] O. Dahl,et al. An ILU preconditioner with coupled node fill‐in for iterative solution of the mixed finite element formulation of the 2D and 3D Navier‐Stokes equations , 1992 .
[9] A. Bonito,et al. A divergence-conforming finite element method for the surface Stokes equation , 2019, SIAM J. Numer. Anal..
[10] Peter Hansbo,et al. Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions , 2016, ESAIM: Mathematical Modelling and Numerical Analysis.
[11] S. Capizzano,et al. On an augmented Lagrangian-based preconditioning of Oseen type problems , 2011 .
[12] Maxim A. Olshanskii,et al. A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..
[13] S. Börm,et al. ℋ︁‐LU factorization in preconditioners for augmented Lagrangian and grad‐div stabilized saddle point systems , 2012 .
[14] I. Bendixson,et al. Sur les racines d'une équation fondamentale , 1902 .
[15] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[16] Arnold Reusken,et al. Error analysis of higher order Trace Finite Element Methods for the surface Stokes equation , 2019, J. Num. Math..
[17] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[18] Maxim A. Olshanskii,et al. LU factorizations and ILU preconditioning for stabilized discretizations of incompressible Navier-Stokes equations , 2017, Numer. Linear Algebra Appl..
[19] Maxim A. Olshanskii,et al. A Finite Element Method for the Surface Stokes Problem , 2018, SIAM J. Sci. Comput..
[20] Christoph Lehrenfeld,et al. High order unfitted finite element methods on level set domains using isoparametric mappings , 2015, ArXiv.
[21] Lawrence Mitchell,et al. A Reynolds-robust preconditioner for the Reynolds-robust Scott-Vogelius discretization of the stationary incompressible Navier-Stokes equations , 2020, ArXiv.
[22] M. Benzi,et al. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2010) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2267 Modified augmented Lagrangian preconditioners for the incompressible Navier , 2022 .
[23] Peter Hansbo,et al. A stabilized cut finite element method for partial differential equations on surfaces: The Laplace–Beltrami operator , 2013, 1312.1097.
[24] Maxim A. Olshanskii,et al. Inf-sup stability of the trace P2-P1 Taylor-Hood elements for surface PDEs , 2019, ArXiv.
[25] Axel Voigt,et al. Solving the incompressible surface Navier-Stokes equation by surface finite elements , 2017, 1709.02803.
[26] Thomas-Peter Fries,et al. Higher‐order surface FEM for incompressible Navier‐Stokes flows on manifolds , 2017, ArXiv.
[27] O. Marquet,et al. Augmented Lagrangian preconditioner for large-scale hydrodynamic stability analysis , 2019, Computer Methods in Applied Mechanics and Engineering.
[28] Zhen Wang,et al. Analysis of Augmented Lagrangian-Based Preconditioners for the Steady Incompressible Navier-Stokes Equations , 2011, SIAM J. Sci. Comput..
[29] B. J. Gross,et al. Meshfree Methods on Manifolds for Hydrodynamic Flows on Curved Surfaces: A Generalized Moving Least-Squares (GMLS) Approach , 2019, J. Comput. Phys..
[30] Segal,et al. Preconditioners for Incompressible Navier-Stokes Solvers , 2010 .
[31] C. Vuik,et al. A comparison of preconditioners for incompressible Navier–Stokes solvers , 2008 .
[32] A. de Niet,et al. Two preconditioners for saddle point problems in fluid flows , 2007 .
[33] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[34] Maxim A. Olshanskii,et al. ILU Preconditioners for Nonsymmetric Saddle-Point Matrices with Application to the Incompressible Navier-Stokes Equations , 2015, SIAM J. Sci. Comput..
[35] Maxim A. Olshanskii,et al. A Penalty Finite Element Method for a Fluid System Posed on Embedded Surface , 2018, Journal of Mathematical Fluid Mechanics.
[36] Christoph Lehrenfeld,et al. Analysis of a High-Order Trace Finite Element Method for PDEs on Level Set Surfaces , 2016, SIAM J. Numer. Anal..
[37] Axel Voigt,et al. Hydrodynamic interactions in polar liquid crystals on evolving surfaces , 2018, Physical Review Fluids.
[38] M. Olshanskii. A low order Galerkin finite element method for the Navier–Stokes equations of steady incompressible flow: a stabilization issue and iterative methods , 2002 .
[39] Christoph Lehrenfeld,et al. Divergence-free tangential finite element methods for incompressible flows on surfaces , 2019, ArXiv.
[40] I. Nitschke,et al. A finite element approach to incompressible two-phase flow on manifolds , 2012, Journal of Fluid Mechanics.
[41] J. Cahouet,et al. Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .
[42] Xin He,et al. Combining the Augmented Lagrangian Preconditioner with the Simple Schur Complement Approximation , 2018, SIAM J. Sci. Comput..
[43] Maxim A. Olshanskii,et al. Grad-div stablilization for Stokes equations , 2003, Math. Comput..
[44] Padmini Rangamani,et al. Interaction between surface shape and intra-surface viscous flow on lipid membranes , 2012, Biomechanics and Modeling in Mechanobiology.
[45] Volker John,et al. Numerical Studies of Finite Element Variational Multiscale Methods for Turbulent Flow Simulations , 2010 .
[46] Peter Hansbo,et al. A cut discontinuous Galerkin method for the Laplace-Beltrami operator , 2015, 1507.05835.
[47] Maxim A. Olshanskii,et al. Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .
[48] Maxim A. Olshanskii,et al. Trace Finite Element Methods for PDEs on Surfaces , 2016, 1612.00054.
[49] Christoph Lehrenfeld,et al. On reference solutions and the sensitivity of the 2D Kelvin-Helmholtz instability problem , 2018, Comput. Math. Appl..
[50] Maxim A. Olshanskii,et al. Incompressible fluid problems on embedded surfaces: Modeling and variational formulations , 2017, Interfaces and Free Boundaries.
[51] Lawrence Mitchell,et al. An Augmented Lagrangian Preconditioner for the 3D Stationary Incompressible Navier-Stokes Equations at High Reynolds Number , 2018, SIAM J. Sci. Comput..
[52] Morton E. Gurtin,et al. A continuum theory of elastic material surfaces , 1975 .
[53] P. A. Gazca-Orozco,et al. An augmented Lagrangian preconditioner for implicitly-constituted non-Newtonian incompressible flow , 2020, SIAM J. Sci. Comput..