Recycling augmented Lagrangian preconditioner in an incompressible fluid solver

The paper discusses a reuse of matrix factorization as a building block in the Augmented Lagrangian (AL) and modified AL preconditioners for a non-symmetric saddle point linear algebraic systems. The strategy is applied to solve two-dimensional incompressible fluid problems with efficiency rates independent of the Reynolds number. The solver is then tested to simulate a motion of surface fluids, an example of 2D flows motivated by an interest in lateral fluidity of inextensible viscous membranes. Numerical examples include the Kelvin–Helmholtz instability problem posed on the sphere and on the torus.

[1]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..

[2]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian Approach to Linearized Problems in Hydrodynamic Stability , 2008, SIAM J. Sci. Comput..

[3]  M. Arroyo,et al.  Modelling fluid deformable surfaces with an emphasis on biological interfaces , 2018, Journal of Fluid Mechanics.

[4]  Lawrence Mitchell,et al.  A Reynolds-robust preconditioner for the Scott-Vogelius discretization of the stationary incompressible Navier-Stokes equations , 2020, The SMAI journal of computational mathematics.

[5]  G. Rapin,et al.  Efficient augmented Lagrangian‐type preconditioning for the Oseen problem using Grad‐Div stabilization , 2013 .

[6]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[7]  Arnold Reusken,et al.  Finite Element Error Analysis of Surface Stokes Equations in Stream Function Formulation , 2019, ArXiv.

[8]  O. Dahl,et al.  An ILU preconditioner with coupled node fill‐in for iterative solution of the mixed finite element formulation of the 2D and 3D Navier‐Stokes equations , 1992 .

[9]  A. Bonito,et al.  A divergence-conforming finite element method for the surface Stokes equation , 2019, SIAM J. Numer. Anal..

[10]  Peter Hansbo,et al.  Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions , 2016, ESAIM: Mathematical Modelling and Numerical Analysis.

[11]  S. Capizzano,et al.  On an augmented Lagrangian-based preconditioning of Oseen type problems , 2011 .

[12]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[13]  S. Börm,et al.  ℋ︁‐LU factorization in preconditioners for augmented Lagrangian and grad‐div stabilized saddle point systems , 2012 .

[14]  I. Bendixson,et al.  Sur les racines d'une équation fondamentale , 1902 .

[15]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[16]  Arnold Reusken,et al.  Error analysis of higher order Trace Finite Element Methods for the surface Stokes equation , 2019, J. Num. Math..

[17]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[18]  Maxim A. Olshanskii,et al.  LU factorizations and ILU preconditioning for stabilized discretizations of incompressible Navier-Stokes equations , 2017, Numer. Linear Algebra Appl..

[19]  Maxim A. Olshanskii,et al.  A Finite Element Method for the Surface Stokes Problem , 2018, SIAM J. Sci. Comput..

[20]  Christoph Lehrenfeld,et al.  High order unfitted finite element methods on level set domains using isoparametric mappings , 2015, ArXiv.

[21]  Lawrence Mitchell,et al.  A Reynolds-robust preconditioner for the Reynolds-robust Scott-Vogelius discretization of the stationary incompressible Navier-Stokes equations , 2020, ArXiv.

[22]  M. Benzi,et al.  INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2010) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2267 Modified augmented Lagrangian preconditioners for the incompressible Navier , 2022 .

[23]  Peter Hansbo,et al.  A stabilized cut finite element method for partial differential equations on surfaces: The Laplace–Beltrami operator , 2013, 1312.1097.

[24]  Maxim A. Olshanskii,et al.  Inf-sup stability of the trace P2-P1 Taylor-Hood elements for surface PDEs , 2019, ArXiv.

[25]  Axel Voigt,et al.  Solving the incompressible surface Navier-Stokes equation by surface finite elements , 2017, 1709.02803.

[26]  Thomas-Peter Fries,et al.  Higher‐order surface FEM for incompressible Navier‐Stokes flows on manifolds , 2017, ArXiv.

[27]  O. Marquet,et al.  Augmented Lagrangian preconditioner for large-scale hydrodynamic stability analysis , 2019, Computer Methods in Applied Mechanics and Engineering.

[28]  Zhen Wang,et al.  Analysis of Augmented Lagrangian-Based Preconditioners for the Steady Incompressible Navier-Stokes Equations , 2011, SIAM J. Sci. Comput..

[29]  B. J. Gross,et al.  Meshfree Methods on Manifolds for Hydrodynamic Flows on Curved Surfaces: A Generalized Moving Least-Squares (GMLS) Approach , 2019, J. Comput. Phys..

[30]  Segal,et al.  Preconditioners for Incompressible Navier-Stokes Solvers , 2010 .

[31]  C. Vuik,et al.  A comparison of preconditioners for incompressible Navier–Stokes solvers , 2008 .

[32]  A. de Niet,et al.  Two preconditioners for saddle point problems in fluid flows , 2007 .

[33]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[34]  Maxim A. Olshanskii,et al.  ILU Preconditioners for Nonsymmetric Saddle-Point Matrices with Application to the Incompressible Navier-Stokes Equations , 2015, SIAM J. Sci. Comput..

[35]  Maxim A. Olshanskii,et al.  A Penalty Finite Element Method for a Fluid System Posed on Embedded Surface , 2018, Journal of Mathematical Fluid Mechanics.

[36]  Christoph Lehrenfeld,et al.  Analysis of a High-Order Trace Finite Element Method for PDEs on Level Set Surfaces , 2016, SIAM J. Numer. Anal..

[37]  Axel Voigt,et al.  Hydrodynamic interactions in polar liquid crystals on evolving surfaces , 2018, Physical Review Fluids.

[38]  M. Olshanskii A low order Galerkin finite element method for the Navier–Stokes equations of steady incompressible flow: a stabilization issue and iterative methods , 2002 .

[39]  Christoph Lehrenfeld,et al.  Divergence-free tangential finite element methods for incompressible flows on surfaces , 2019, ArXiv.

[40]  I. Nitschke,et al.  A finite element approach to incompressible two-phase flow on manifolds , 2012, Journal of Fluid Mechanics.

[41]  J. Cahouet,et al.  Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .

[42]  Xin He,et al.  Combining the Augmented Lagrangian Preconditioner with the Simple Schur Complement Approximation , 2018, SIAM J. Sci. Comput..

[43]  Maxim A. Olshanskii,et al.  Grad-div stablilization for Stokes equations , 2003, Math. Comput..

[44]  Padmini Rangamani,et al.  Interaction between surface shape and intra-surface viscous flow on lipid membranes , 2012, Biomechanics and Modeling in Mechanobiology.

[45]  Volker John,et al.  Numerical Studies of Finite Element Variational Multiscale Methods for Turbulent Flow Simulations , 2010 .

[46]  Peter Hansbo,et al.  A cut discontinuous Galerkin method for the Laplace-Beltrami operator , 2015, 1507.05835.

[47]  Maxim A. Olshanskii,et al.  Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .

[48]  Maxim A. Olshanskii,et al.  Trace Finite Element Methods for PDEs on Surfaces , 2016, 1612.00054.

[49]  Christoph Lehrenfeld,et al.  On reference solutions and the sensitivity of the 2D Kelvin-Helmholtz instability problem , 2018, Comput. Math. Appl..

[50]  Maxim A. Olshanskii,et al.  Incompressible fluid problems on embedded surfaces: Modeling and variational formulations , 2017, Interfaces and Free Boundaries.

[51]  Lawrence Mitchell,et al.  An Augmented Lagrangian Preconditioner for the 3D Stationary Incompressible Navier-Stokes Equations at High Reynolds Number , 2018, SIAM J. Sci. Comput..

[52]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[53]  P. A. Gazca-Orozco,et al.  An augmented Lagrangian preconditioner for implicitly-constituted non-Newtonian incompressible flow , 2020, SIAM J. Sci. Comput..