On the Parallelization of Monte-Carlo planning
暂无分享,去创建一个
Olivier Teytaud | Sylvain Gelly | Arpad Rimmel | Jean-Baptiste Hoock | Yann Kalemkarian | S. Gelly | O. Teytaud | Jean-Baptiste Hoock | Arpad Rimmel | Y. Kalemkarian
[1] J. Banks,et al. Denumerable-Armed Bandits , 1992 .
[2] R. Agrawal. The Continuum-Armed Bandit Problem , 1995 .
[3] Dimitri P. Bertsekas,et al. Dynamic Programming and Optimal Control, Two Volume Set , 1995 .
[4] Andrew G. Barto,et al. Learning to Act Using Real-Time Dynamic Programming , 1995, Artif. Intell..
[5] Robert W. Chen,et al. Bandit problems with infinitely many arms , 1997 .
[6] Claudio Gentile,et al. Adaptive and Self-Confident On-Line Learning Algorithms , 2000, J. Comput. Syst. Sci..
[7] Csaba Szepesvari,et al. Reduced-Variance Payoff Estimation in Adversarial Bandit Problems , 2005 .
[8] Tristan Cazenave,et al. Combining Tactical Search and Monte-Carlo in the Game of Go , 2005, CIG.
[9] Thomas P. Hayes,et al. Robbing the bandit: less regret in online geometric optimization against an adaptive adversary , 2006, SODA '06.
[10] Rémi Coulom,et al. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search , 2006, Computers and Games.
[11] Csaba Szepesvári,et al. Bandit Based Monte-Carlo Planning , 2006, ECML.
[12] David Silver,et al. Combining online and offline knowledge in UCT , 2007, ICML '07.
[13] Rémi Munos,et al. Bandit Algorithms for Tree Search , 2007, UAI.
[14] Rémi Coulom,et al. Computing "Elo Ratings" of Move Patterns in the Game of Go , 2007, J. Int. Comput. Games Assoc..
[15] Sylvain Gelly,et al. Modifications of UCT and sequence-like simulations for Monte-Carlo Go , 2007, 2007 IEEE Symposium on Computational Intelligence and Games.
[16] Dimitri P. Bertsekas,et al. Approximate Dynamic Programming , 2017, Encyclopedia of Machine Learning and Data Mining.
[17] T. L. Lai Andherbertrobbins. Asymptotically Efficient Adaptive Allocation Rules , 2022 .