Deformation and life analysis of composite flywheel disk systems

Abstract In this study an attempt is made to put into perspective the problem of a rotating disk, be it a single disk or a number of concentric disks forming a unit. An analytical model capable of performing an elastic stress analysis for single/multiple, annular/solid, anisotropic/isotropic disk systems, subjected to pressure surface tractions, body forces (in the form of temperature-changes and rotation fields) and interfacial misfits is summarized. Results of an extensive parametric study are presented to clearly define the key design variables and their associated influence. In general the important parameters were identified as misfit, mean radius, thickness, material property and/or load gradation, and speed; all of which must be simultaneously optimized to achieve the ‘best’ and most reliable design. Also, the important issue of defining proper performance/merit indices (based on the specific stored energy), in the presence of multiaxiality and material anisotropy is addressed. These merit indices are then utilized to discuss the difference between flywheels made from PMC and TMC materials with either an annular or solid geometry. Finally two major aspects of failure analysis, that is the static and cyclic limit (burst) speeds are addressed. In the case of static limit loads, a lower (first fracture) bound for disks with constant thickness is presented. The results (interaction diagrams) are displayed graphically in designer friendly format. For the case of fatigue, a representative fatigue/life master curve is illustrated in which the normalized limit speed versus number of applied cycles is given for a cladded TMC disk application.

[1]  S. Arnold,et al.  A coupled/uncoupled deformation and fatigue damage algorithm utilizing the finite element method , 1994 .

[2]  A. Sherbourne,et al.  Elastic stresses in anisotropic disks of variable thickness , 1970 .

[3]  Die Berechnung teilweise plastifizierter, rotierender Kreisscheiben aus Werkstoff mit Verfestigung unter Anwendung des Analogrechners , 1972 .

[4]  On the burst strength and necking behaviour of rotating disks , 1978 .

[5]  Muzio Gola,et al.  A study of the stress distribution in rotating, orthotropic discs , 1979 .

[6]  G. Schneider,et al.  Calculation of the stress intensity factor of an edge crack in a finite elastic disc using the weight function method , 1989 .

[7]  Richard M. Christensen,et al.  Optimal Design of Anisotropic (Fiber-Reinforced) Flywheels , 1976 .

[8]  R. Han,et al.  Analysis of High-Speed Rotating Disks With Variable Thickness and Inhomogeneity , 1994 .

[9]  H. Lakshminarayana,et al.  Elastic stresses in rotating orthotropic discs of variable thickness , 1973 .

[10]  B. Kaftanoğlu,et al.  Mechanical Energy Storage Using Flywheels and Design Optimization , 1989 .

[11]  Stress intensity factors for an ARC crack in a rotating disc , 1985 .

[12]  M. R. Shanbhag Stress analysis of rotating disc with fem—emphasis on stresses at contours of dissimilar holes at the rim , 1984 .

[13]  S S Manson Determination of elastic stresses in gas-turbine disks , 1947 .

[14]  Charles E. Bakis,et al.  Design and Manufacturing of Filament Wound Elastomeric Matrix Composite Flywheels , 1997 .

[15]  T. Chou,et al.  Optimization of composite flywheel design , 1977 .

[16]  J. Ari-Gur,et al.  On rotating polar-orthotropic circular disks , 1981 .

[17]  E. Dill,et al.  Theory of Elasticity of an Anisotropic Elastic Body , 1964 .

[18]  David Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[19]  C. R. Keckler,et al.  An Assessment of Integrated Flywheel System Technology , 1984 .

[20]  J. Betten,et al.  Inelastisches Verhalten rotierender Scheiben unter Berücksichtigung der werkstoffbedingten Anisotropie und der tensoriellen Nichtlinearität , 1991 .

[21]  A. Saleeb,et al.  Deformation and Life Analysis of Composite Flywheel Disk and Multi-disk Systems , 2001 .

[22]  B. E. Sandman Finite deformation of a rotating orthotropic cylinder with linear elasticity , 1974 .

[23]  F. Manna Rotating discs of unconventional profile , 1968 .

[24]  J. Nowinski NOTE ON THE SOLUTION OF THE EQUATIONS CONTROLLING STABILITY OF NONLINEAR THERMOELASTIC WAVES IN A SPINNING DISK , 1984 .

[25]  R. D. Gregory The spinning circular disc with a radial edge crack; an exact solution , 1989 .

[26]  S. Tang Elastic stresses in rotating anisotropic disks , 1969 .

[27]  A. Seireg,et al.  Optimum Design of Rotating Disks , 1970 .

[28]  Habercom DESIGN AND APPLICATIONS OF FLYWHEELS (CITATIONS FROM THE NTIS DATA BASE) , 1978 .

[29]  Jacek Skrzypek,et al.  Plasticity and Creep Theory Examples and Problems , 1993 .

[30]  S. M. Arnold,et al.  A Differential CDM Model for Fatigue of Unidirectional Metal Matrix Composites , 1994 .

[31]  A. A. Sukere The stress intensity factors of internal radial cracks in rotating disks by the method of caustics , 1987 .

[32]  M. Gola,et al.  The Stress Distribution in Orthotropic Rotating Disks , 1981 .

[33]  Francesco Ginesu,et al.  Elasto-plastic analysis of a rotating model conical turbine disc , 1975 .

[34]  Brett A. Bednarcyk,et al.  Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC): User Guide. Version 3 , 1999 .

[35]  D. Hayhurst The Prediction of Creep-Rupture Times of Rotating Disks Using Biaxial Damage Relationships , 1973 .

[36]  T. Irie,et al.  The Steady-State Response of a Rotating Damped Disk of Variable Thickness , 1980 .

[37]  The rotating solid disk in the fully plastic state , 1984 .

[38]  S. Deteresa,et al.  Materials for Advanced Flywheel Energy-Storage Devices , 1999 .

[39]  S. V. Kulkarni Flywheel rotor and containment technology development , 1981 .

[40]  Makoto Watanabe,et al.  Evaluation of Ceramic Rotor Strength by Cold and Hot Spin Tests , 1994 .

[41]  U. Güven,et al.  Elastic-plastic stresses in a rotating annular disk of variable thickness and variable density , 1992 .

[42]  M. Pástor,et al.  Limit pressure of a circumferentially reinforced SiC/Ti ring , 1992 .

[43]  Perturbation solution of rotating solid disks with nonlinear strain-hardening , 1997 .

[44]  D. K. Bazaj,et al.  Stress analysis of compounded rotating discs , 1971 .

[45]  C. D. Mote,et al.  Absence of one nodal diameter critical speed modes in an axisymmetric rotating disk , 1992 .

[46]  Matti A. Ranta On the optimum shape of a rotating disk of any isotropic material , 1969 .

[47]  S. Ha,et al.  Optimum Design of Thick-Walled Composite Rings for an Energy Storage System , 1998 .

[48]  J. G. Bitterly,et al.  Flywheel technology: past, present, and 21st century projections , 1998 .

[49]  R. F. Beach,et al.  A flywheel energy storage system test on the International Space Station , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).

[50]  R. C. Flanagan,et al.  Design Of A Flywheel Surge Power Unit For Electric Vehicle Drives , 1990, Proceedings of the 25th Intersociety Energy Conversion Engineering Conference.

[51]  U. Güven,et al.  Plastic Stress Distribution in a Rotating Disk with Rigid Inclusion Under a Radial Temperature Gradient , 1998 .

[52]  B. M. Singh,et al.  Some annular disc inclusion problems in elasticity , 1984 .

[53]  G. Gurushankar Thermal stresses in a rotating, nonhomogeneous, anisotropic disk of varying thickness and density , 1975 .

[54]  H. E. Evans,et al.  Inertial energy storage hardware definition study (ring rotor) , 1984 .

[55]  Mohammad M. Megahed,et al.  Elastoplastic analysis of rotating shrink-fitted discs with nonlinear hardening characteristics , 1993 .

[56]  M. Berger,et al.  Optimal design of a rotating disk for kinetic energy storage , 1988 .

[57]  S. M. Arnold,et al.  Differential continuum damage mechanics models for creep and fatigue of unidirectional metal-matrix composites , 1991 .

[58]  K. M. Ragsdell,et al.  Optimal Flywheel Design With a General Thickness Form Representation , 1983 .

[59]  Giancarlo Genta Spin tests on medium energy density flywheels , 1982 .

[60]  George G. Karady,et al.  Model and simulation of a flywheel energy storage system at a utility substation using an induction machine , 1998 .

[61]  S. S. Manson,et al.  Determination of stresses in gas-turbine disks subjected to plastic flow and creep , 1948 .

[62]  Lihua You,et al.  Numerical analysis of elastic–plastic rotating disks with arbitrary variable thickness and density , 2000 .

[63]  Benjamin M. Ma,et al.  A power-function creep analysis for rotating solid disks having variable thickness and temperature , 1964 .

[64]  C. Chang Stresses and Displacements in Rotating Anisotropic Disks with Variable Densities , 1976 .

[65]  N. Tutuncu,et al.  Effect of anisotropy on stresses in rotating discs , 1995 .

[66]  R. H. Toland,et al.  Transfer Matrix for Analysis of Composite Flywheels , 1976 .

[67]  William J.T. Daniel FLYWHEEL DESIGN BY THE FINITE ELEMENT METHOD , 1981 .

[68]  Charles W. Bert,et al.  Failure analysis of rotating disks , 1995 .

[69]  Yong Xu Stress intensity factors of a radial crack in a rotating compound disk , 1993 .

[70]  Habercom DESIGN AND APPLICATIONS OF FLYWHEELS. SEPTEMBER, 1978-OCTOBER, 1980 (CITATIONS FROM THE NTIS DATA BASE) , 1980 .

[71]  A. Stodola Steam and gas turbines , 1927 .

[72]  M. D. Olson,et al.  Finite element analysis of rotating disks , 1981 .

[73]  M. Faulkner,et al.  Finite Elastic Deformation of an Annular Rotating Disk , 1976 .

[74]  Jun Chen,et al.  Micromechanical characterization of nonlinear behavior of advanced polymer matrix composites , 1996 .

[75]  J. Kirkhope,et al.  Vibration and stress analysis of thin rotating discs using annular finite elements , 1976 .

[76]  U. Gamer,et al.  Tresca’s Yield Condition and the Rotating Disk , 1983 .