Guaranteed recovery of quantum processes from few measurements

Quantum process tomography is the task of reconstructing unknown quantum channels from measured data. In this work, we introduce compressed sensing-based methods that facilitate the reconstruction of quantum channels of low Kraus rank. Our main contribution is the analysis of a natural measurement model for this task: We assume that data is obtained by sending pure states into the channel and measuring expectation values on the output. Neither ancillary systems nor coherent operations across multiple channel uses are required. Most previous results on compressed process reconstruction reduce the problem to quantum state tomography on the channel's Choi matrix. While this ansatz yields recovery guarantees from an essentially minimal number of measurements, physical implementations of such schemes would typically involve ancillary systems. A priori, it is unclear whether a measurement model tailored directly to quantum process tomography might require more measurements. We establish that this is not the case. Technically, we prove recovery guarantees for three different reconstruction algorithms. The reconstructions are based on a trace, diamond, and $\ell_2$-norm minimization, respectively. Our recovery guarantees are uniform in the sense that with one random choice of measurement settings all quantum channels can be recovered equally well. Moreover, stability against arbitrary measurement noise and robustness against violations of the low-rank assumption is guaranteed. Numerical studies demonstrate the feasibility of the approach.

[1]  Jens Eisert,et al.  Recovering quantum gates from few average gate fidelities , 2018, Physical review letters.

[2]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[3]  A. H. Werner,et al.  Mixing Properties of Stochastic Quantum Hamiltonians , 2016, Communications in Mathematical Physics.

[4]  Daniel A. Lidar,et al.  Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Emmanuel J. Candès,et al.  Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.

[7]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[8]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[9]  T. Monz,et al.  Realization of the quantum Toffoli gate with trapped ions. , 2008, Physical review letters.

[10]  Ulrich Michel,et al.  Comments on “Improving Compressed Sensing With the Diamond Norm”–Saturation of the Norm Inequalities Between Diamond and Nuclear Norm , 2016, IEEE Transactions on Information Theory.

[11]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[12]  Felix Krahmer,et al.  Improved Recovery Guarantees for Phase Retrieval from Coded Diffraction Patterns , 2014, arXiv.org.

[13]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[14]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[15]  John M. Martinis,et al.  Quantum process tomography of two-qubit controlled-Z and controlled-NOT gates using superconducting phase qubits , 2010, 1006.5084.

[16]  Emanuel Knill,et al.  Fermionic Linear Optics and Matchgates , 2001, ArXiv.

[17]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[18]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[19]  Peter Jung,et al.  Robust Nonnegative Sparse Recovery and the Nullspace Property of 0/1 Measurements , 2016, IEEE Transactions on Information Theory.

[20]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[21]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[22]  N. Timoney,et al.  Error-resistant Single Qubit Gates with Trapped Ions , 2007 .

[23]  Fernando G S L Brandão,et al.  Efficient Quantum Pseudorandomness. , 2016, Physical review letters.

[24]  J. Eisert,et al.  Efficient and feasible state tomography of quantum many-body systems , 2012, 1204.5735.

[25]  Zhan Shi,et al.  Quantum control and process tomography of a semiconductor quantum dot hybrid qubit , 2014, Nature.

[26]  M. Guta,et al.  Statistical analysis of compressive low rank tomography with random measurements , 2017 .

[27]  Jens Eisert,et al.  Improving Compressed Sensing With the Diamond Norm , 2015, IEEE Transactions on Information Theory.

[28]  W. Neuhauser,et al.  Error-resistant Single Qubit Gates with Trapped Ions , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[29]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[30]  Marco Barbieri,et al.  Simplifying quantum logic using higher-dimensional Hilbert spaces , 2009 .

[31]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[32]  B E Anderson,et al.  Accurate and Robust Unitary Transformations of a High-Dimensional Quantum System. , 2015, Physical review letters.

[33]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[34]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[35]  B. Simon Representations of finite and compact groups , 1995 .

[36]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[37]  J. Tropp User-Friendly Tools for Random Matrices: An Introduction , 2012 .

[38]  Andris Ambainis,et al.  Quantum t-designs: t-wise Independence in the Quantum World , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[39]  Amnon Ta-Shma,et al.  On the complexity of approximating the diamond norm , 2009, Quantum Inf. Comput..

[40]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[41]  Vladislav Voroninski Quantum Tomography From Few Full-Rank Observables , 2013, ArXiv.

[42]  Emmanuel J. Candès,et al.  Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements , 2010, ArXiv.

[43]  F. Brandão,et al.  Local random quantum circuits are approximate polynomial-designs: numerical results , 2012, 1208.0692.

[44]  Shelby Kimmel,et al.  Phase retrieval using unitary 2-designs , 2017 .

[45]  Holger Rauhut,et al.  Stable low-rank matrix recovery via null space properties , 2015, ArXiv.

[46]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[47]  Markus Grassl,et al.  The Clifford group fails gracefully to be a unitary 4-design , 2016, 1609.08172.

[48]  Robert L. Kosut,et al.  Compressed sensing quantum process tomography for superconducting quantum gates , 2014, 1407.0761.

[49]  A. Harrow,et al.  Approximate Unitary t-Designs by Short Random Quantum Circuits Using Nearest-Neighbor and Long-Range Gates , 2018, Communications in Mathematical Physics.

[50]  Joel A. Tropp,et al.  Convex recovery of a structured signal from independent random linear measurements , 2014, ArXiv.

[51]  John Watrous,et al.  Semidefinite Programs for Completely Bounded Norms , 2009, Theory Comput..

[52]  Christoph Hirche,et al.  Efficient quantum pseudorandomness with nearly time-independent hamiltonian dynamics , 2016, 1609.07021.

[53]  Yaoyun Shi Both Toffoli and controlled-NOT need little help to do universal quantum computing , 2003, Quantum Inf. Comput..

[54]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[55]  Richard Kueng,et al.  Comparing Experiments to the Fault-Tolerance Threshold. , 2015, Physical review letters.

[56]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[57]  Steven T. Flammia,et al.  Randomized benchmarking with confidence , 2014, 1404.6025.

[58]  Marcus P. da Silva,et al.  Implementation of a Toffoli gate with superconducting circuits , 2011, Nature.

[59]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[60]  S. Flammia,et al.  Random unitary maps for quantum state reconstruction , 2009, 0912.2101.

[61]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[62]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[63]  D. Gross,et al.  Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.

[64]  Statistical analysis of low rank tomography with compressive random measurements , 2016, 1609.03758.

[65]  M. S. Tame,et al.  Experimentally exploring compressed sensing quantum tomography , 2016, 1611.01189.

[66]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[67]  J. Seidel,et al.  SPHERICAL CODES AND DESIGNS , 1991 .

[68]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[69]  A. G. White,et al.  Ancilla-assisted quantum process tomography. , 2003, Physical review letters.

[70]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[71]  Holger Rauhut,et al.  Low rank matrix recovery from rank one measurements , 2014, ArXiv.

[72]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[73]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[74]  Guoming Wang,et al.  Tensor network non-zero testing , 2014, Quantum Inf. Comput..

[75]  S. Chatterjee,et al.  Matrix estimation by Universal Singular Value Thresholding , 2012, 1212.1247.

[76]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[77]  Anastasios Kyrillidis,et al.  Provable quantum state tomography via non-convex methods , 2017, ArXiv.

[78]  Richard Andrew Low,et al.  Pseudo-randonmess and Learning in Quantum Computation , 2010, 1006.5227.

[79]  Jonas Helsen,et al.  Representations of the multi-qubit Clifford group , 2016, Journal of Mathematical Physics.

[80]  M. Ziman Process positive-operator-valued measure: A mathematical framework for the description of process tomography experiments , 2008, 0802.3862.

[81]  Anthony Laing,et al.  Direct dialling of Haar random unitary matrices , 2015, 1506.06220.

[82]  John Watrous,et al.  Simpler semidefinite programs for completely bounded norms , 2012, Chic. J. Theor. Comput. Sci..

[83]  Ulrich Michel,et al.  Note on the saturation of the norm inequalities between diamond and nuclear norm , 2016, ArXiv.

[84]  V. Koltchinskii,et al.  Bounding the smallest singular value of a random matrix without concentration , 2013, 1312.3580.

[85]  R. Kosut,et al.  Efficient measurement of quantum dynamics via compressive sensing. , 2009, Physical review letters.

[86]  Shelby Kimmel,et al.  Robust Extraction of Tomographic Information via Randomized Benchmarking , 2013, 1306.2348.

[87]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[88]  Yi-Kai Liu,et al.  Universal low-rank matrix recovery from Pauli measurements , 2011, NIPS.

[89]  Stephen P. Boyd,et al.  Recent Advances in Learning and Control , 2008, Lecture Notes in Control and Information Sciences.

[90]  Steven T. Flammia,et al.  Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators , 2012, 1205.2300.

[91]  Xiaodong Li,et al.  Phase Retrieval from Coded Diffraction Patterns , 2013, 1310.3240.

[92]  R. Kueng Low rank matrix recovery from few orthonormal basis measurements , 2015, 2015 International Conference on Sampling Theory and Applications (SampTA).

[93]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[94]  I. Deutsch,et al.  Quantum process tomography of unitary and near-unitary maps , 2014, 1404.2877.

[95]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[96]  Shahar Mendelson,et al.  Learning without Concentration , 2014, COLT.

[97]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[98]  Statistically efficient tomography of low rank states with incomplete measurements , 2015, 1510.03229.

[99]  Anastasios Kyrillidis,et al.  Provable compressed sensing quantum state tomography via non-convex methods , 2018, npj Quantum Information.

[100]  Yi-Kai Liu,et al.  Direct fidelity estimation from few Pauli measurements. , 2011, Physical review letters.

[101]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[102]  Shelby Kimmel,et al.  Quantum Compressed Sensing Using 2-Designs , 2015 .

[103]  R. Goodman,et al.  Representations and Invariants of the Classical Groups , 1998 .