Mechanochemical Activation of Zinc and Application to Negishi Cross‐Coupling

Abstract A form independent activation of zinc, concomitant generation of organozinc species and engagement in a Negishi cross‐coupling reaction via mechanochemical methods is reported. The reported method exhibits a broad substrate scope for both C(sp3)–C(sp2) and C(sp2)–C(sp2) couplings and is tolerant to many important functional groups. The method may offer broad reaching opportunities for the in situ generation organometallic compounds from base metals and their concomitant engagement in synthetic reactions via mechanochemical methods.

[1]  Cover Picture: (Isr. J. Chem. 8/2018) , 2018, Israel Journal of Chemistry.

[2]  Y. Monguchi,et al.  Stainless Steel-Mediated Hydrogen Generation from Alkanes and Diethyl Ether and Its Application for Arene Reduction. , 2018, Organic letters.

[3]  Manuela A. Gîlea,et al.  Mechanochemistry of nucleosides, nucleotides and related materials , 2018, Beilstein journal of organic chemistry.

[4]  Phil S. Baran,et al.  Natural Product Total Synthesis: As Exciting as Ever and Here To Stay. , 2018, Journal of the American Chemical Society.

[5]  James Mack,et al.  Mechanochemistry and organic synthesis: from mystical to practical , 2018 .

[6]  D. Browne,et al.  Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? , 2018, Chemical science.

[7]  O. Baudoin,et al.  Barbier-Negishi Coupling of Secondary Alkyl Bromides with Aryl and Alkenyl Triflates and Nonaflates. , 2018, Angewandte Chemie.

[8]  Kecheng Zhang,et al.  Barbier-Negishi Coupling of Secondary Alkyl Bromides with Triflates and Nonaflates , 2018 .

[9]  Jean Martínez,et al.  1,1′-Carbonyldiimidazole and Mechanochemistry: A Shining Green Combination , 2017 .

[10]  D. Browne,et al.  One-pot multistep mechanochemical synthesis of fluorinated pyrazolones , 2017, Beilstein journal of organic chemistry.

[11]  Mario Ellwart,et al.  Herstellung fester polyfunktioneller Alkinylzinkpivalate mit verbesserter Luft‐ und Feuchtigkeitsstabilität , 2017 .

[12]  Mario Ellwart,et al.  Preparation of Solid Polyfunctional Alkynylzinc Pivalates with Enhanced Air and Moisture Stability for Organic Synthesis. , 2017, Angewandte Chemie.

[13]  Mario Ellwart,et al.  Herstellung und Anwendung von festen, salzstabilisierten Zinkamidenolaten mit verbesserter Luftstabilität , 2017 .

[14]  Mario Ellwart,et al.  Preparation and Application of Solid, Salt-Stabilized Zinc Amide Enolates with Enhanced Air and Moisture Stability. , 2017, Angewandte Chemie.

[15]  Carsten Bolm,et al.  Altering Product Selectivity by Mechanochemistry. , 2017, The Journal of organic chemistry.

[16]  Tomislav Friščić,et al.  Mechanochemistry: A Force of Synthesis , 2016, ACS central science.

[17]  Mario Ellwart,et al.  Solid Organozinc Pivalates: A New Class of Zinc Organometallics with Greatly Enhanced Air- and Moisture-Stability , 2017, Synthesis.

[18]  P. Knochel,et al.  Directed Zincation with TMPZnCl·LiCl and Further Functionalization of the Tropolone Scaffold. , 2016, Organic letters.

[19]  T. Swager,et al.  Mechanochemical Synthesis of Extended Iptycenes. , 2016, Journal of the American Chemical Society.

[20]  Jean Martínez,et al.  Poly(ethylene) glycols and mechanochemistry for the preparation of bioactive 3,5-disubstituted hydantoins , 2016 .

[21]  Tim Cernak,et al.  The medicinal chemist's toolbox for late stage functionalization of drug-like molecules. , 2016, Chemical Society reviews.

[22]  Mario Ellwart,et al.  Air-stable solid aryl and heteroaryl organozinc pivalates: syntheses and applications in organic synthesis. , 2014, Chemistry.

[23]  T. Friščić,et al.  Multi-step and multi-component organometallic synthesis in one pot using orthogonal mechanochemical reactions , 2014 .

[24]  M. Organ,et al.  On the remarkably different role of salt in the cross-coupling of arylzincs from that seen with alkylzincs. , 2014, Angewandte Chemie.

[25]  P. Knochel,et al.  Organozinc pivalate reagents: segregation, solubility, stabilization, and structural insights. , 2014, Angewandte Chemie.

[26]  M. Tyagi,et al.  Solvent-free mechanochemical glycosylation in ball mill. , 2013, Carbohydrate research.

[27]  P. Knochel,et al.  TMPZnOPiv•LiCl: a new base for the preparation of air-stable solid zinc pivalates of sensitive aromatics and heteroaromatics. , 2013, Organic letters.

[28]  P. Knochel,et al.  Luftstabile feste aromatische und heterocyclische Zinkreagentien durch hochselektive Metallierungen für Negishi-Kreuzkupplungen† , 2012 .

[29]  P. Knochel,et al.  Improved air-stable solid aromatic and heterocyclic zinc reagents by highly selective metalations for Negishi cross-couplings. , 2012, Angewandte Chemie.

[30]  J. Clyburne,et al.  Higher-order zincates as transmetalators in alkyl-alkyl negishi cross-coupling. , 2012, Angewandte Chemie.

[31]  Cory Valente,et al.  Die Entwicklung raumerfüllender Palladium‐NHC‐Komplexe für anspruchsvollste Kreuzkupplungsreaktionen , 2012 .

[32]  Ka Hou Hoi,et al.  The development of bulky palladium NHC complexes for the most-challenging cross-coupling reactions. , 2012, Angewandte Chemie.

[33]  James Mack,et al.  Mechanochemistry: opportunities for new and cleaner synthesis. , 2012, Chemical Society reviews.

[34]  D. Bohme,et al.  Identification of a higher-order organozincate intermediate involved in Negishi cross-coupling reactions by mass spectrometry and NMR spectroscopy. , 2011, Chemistry.

[35]  Cory Valente,et al.  On the role of additives in alkyl-alkyl Negishi cross-couplings. , 2010, Chemical communications.

[36]  M. Organ,et al.  Pd-PEPPSI-IPent: low-temperature negishi cross-coupling for the preparation of highly functionalized, tetra-ortho-substituted biaryls. , 2010, Angewandte Chemie.

[37]  A. Kennedy,et al.  Exposing the hidden complexity of stoichiometric and catalytic metathesis reactions by elucidation of Mg-Zn hybrids , 2010, Proceedings of the National Academy of Sciences.

[38]  J. Howard,et al.  Revelation of the difference between arylzinc reagents prepared from aryl Grignard and aryllithium reagents respectively: kinetic and structural features. , 2009, Journal of the American Chemical Society.

[39]  B. Lipshutz,et al.  Zn-mediated, Pd-catalyzed cross-couplings in water at room temperature without prior formation of organozinc reagents. , 2009, Journal of the American Chemical Society.

[40]  P. Knochel,et al.  Preparation of polyfunctional arylmagnesium, arylzinc, and benzylic zinc reagents by using magnesium in the presence of LiCl. , 2009, Chemistry.

[41]  P. Knochel,et al.  LiCl-mediated preparation of highly functionalized benzylic zinc chlorides. , 2008, Organic letters.

[42]  P. Knochel,et al.  (tmp)2Zn⋅2 MgCl2⋅2 LiCl: eine chemoselektive Base für die gezielte Zinkierung von empfindlichen Arenen und Heteroarenen , 2007 .

[43]  P. Knochel,et al.  (tmp)(2)Zn x 2 MgCl(2) x 2 LiCl: a chemoselective base for the directed zincation of sensitive arenes and heteroarenes. , 2007, Angewandte Chemie.

[44]  Michael G. Organ,et al.  Aus der Sicht des Synthetikers: Palladiumkomplexe N‐heterocyclischer Carbene als Katalysatoren für Kreuzkupplungen , 2007 .

[45]  M. Organ,et al.  Palladium complexes of N-heterocyclic carbenes as catalysts for cross-coupling reactions--a synthetic chemist's perspective. , 2007, Angewandte Chemie.

[46]  G. Dunet,et al.  Highly diastereoselective synthesis of homoallylic alcohols bearing adjacent quaternary centers using substituted allylic zinc reagents. , 2007, Journal of the American Chemical Society.

[47]  P. Knochel,et al.  Effiziente Synthese funktionalisierter zinkorganischer Verbindungen durch direkte Insertion von Zink in organische Bromide und Iodide , 2006 .

[48]  P. Knochel,et al.  Efficient synthesis of functionalized organozinc compounds by the direct insertion of zinc into organic iodides and bromides. , 2006, Angewandte Chemie.

[49]  Cheng-yi Chen,et al.  Enantioselective, Palladium-Catalyzed α-Arylation of N-Boc-pyrrolidine , 2006 .

[50]  Mayumi Kimura,et al.  A novel procedure for the preparation of zinc reagents: a practical synthesis of (+)-biotin , 2004 .

[51]  K. Takagi,et al.  Functionalized arylzinc compounds in ethereal solvent: direct synthesis from aryl iodides and zinc powder and application to Pd-catalyzed reaction with allylic halides. , 2003, The Journal of organic chemistry.

[52]  Shouquan Huo Highly efficient, general procedure for the preparation of alkylzinc reagents from unactivated alkyl bromides and chlorides. , 2003, Organic letters.

[53]  R. Rieke,et al.  The Reaction of Active Zinc with Organic Bromides , 1999 .

[54]  R. Rieke,et al.  Direct Formation of Secondary and Tertiary Alkylzinc Bromides and Subsequent Cu(I)-Mediated Couplings. , 1996, The Journal of organic chemistry.

[55]  R. Rieke,et al.  1,4-Addition of secondary and tertiary alkylzinc bromides to .alpha.,.beta.-unsaturated ketones without a copper catalyst. , 1995 .

[56]  P. Knochel,et al.  Preparation of new classes of aliphatic, allylic, and benzylic zinc and copper reagents by the insertion of zinc dust into organic halides, phosphates, and sulfonates , 1992 .

[57]  P. Knochel,et al.  Preparation of highly functionalized magnesium, zinc, and copper aryl and alkenyl organometallics via the corresponding organolithiums , 1992 .

[58]  Koichi Tanaka,et al.  Reformatsky and Luche reaction in the absence of solvent , 1991 .

[59]  R. Rieke,et al.  The direct formation of functionalized alkyl(aryl)zinc halides by oxidative addition of highly reactive zinc with organic halides and their reactions with acid chlorides, .alpha.,.beta.-unsaturated ketones, and allylic, aryl, and vinyl halides , 1991 .

[60]  M. P. Yeh,et al.  General Approach to Highly Functionalized Benzylic Organometallics of Zinc and Copper , 1988 .

[61]  M. P. Yeh,et al.  Synthesis and reactivity toward acyl chlorides and enones of the new highly functionalized copper reagents RCu(CN)ZnI , 1988 .

[62]  P. Miginiac,et al.  Activation of zinc by trimethylchlorosilane. An improved procedure for the preparation of .beta.-hydroxy esters from ethyl bromoacetate and aldehydes or ketones (Reformatsky reaction) , 1987 .

[63]  R. Sauvêtre,et al.  Preparation et reactivite de fluorovinylzincs , 1985 .

[64]  P. Knochel,et al.  Addition of functionalized allylic bromides to terminal alkynes , 1984 .

[65]  J. Gawroński Tandem reformatsky reactions of 2-bromopropionates in the presence of chlorotrimethylsilane , 1984 .

[66]  K. Gupta,et al.  β-Lactam formation by ultrasound-promoted reformatsky type reaction , 1984 .

[67]  R. Rieke,et al.  Preparation of highly reactive metal powders. New procedure for the preparation of highly reactive zinc and magnesium metal powders , 1981 .

[68]  R. Rieke,et al.  Activated metals. Preparation of highly reactive zinc , 1973 .

[69]  M. Newman Enolization in the Reformatsky Reaction , 1942 .