Preconditioned Krylov Subspace Methods for Sampling Multivariate Gaussian Distributions
暂无分享,去创建一个
[1] R. A. Silverman,et al. Special functions and their applications , 1966 .
[2] M. Shinozuka,et al. Digital simulation of random processes and its applications , 1972 .
[3] J. Pasciak,et al. Computer solution of large sparse positive definite systems , 1982 .
[4] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[5] William F. Moss,et al. Decay rates for inverses of band matrices , 1984 .
[6] O. Axelsson,et al. On the rate of convergence of the preconditioned conjugate gradient method , 1986 .
[7] M. Fixman. Construction of Langevin forces in the simulation of hydrodynamic interaction , 1986 .
[8] H. V. D. Vorst,et al. The rate of convergence of Conjugate Gradients , 1986 .
[9] Goodman,et al. Multigrid Monte Carlo method. Conceptual foundations. , 1989, Physical review. D, Particles and fields.
[10] Y. Saad,et al. On acceleration methods for coupled nonlinear elliptic systems , 1991 .
[11] Leslie Greengard,et al. The Fast Gauss Transform , 1991, SIAM J. Sci. Comput..
[12] L. Knizhnerman,et al. Two polynomial methods of calculating functions of symmetric matrices , 1991 .
[13] Yousef Saad,et al. Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..
[14] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .
[15] L. Kolotilina,et al. Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..
[16] Y. Saad. Theoretical Error Bounds and General Analysis of afew , 2022 .
[17] Vladimir Druskin,et al. Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic , 1995, Numer. Linear Algebra Appl..
[18] C. R. Dietrich,et al. Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..
[19] Michele Benzi,et al. Robust Approximate Inverse Preconditioning for the Conjugate Gradient Method , 2000, SIAM J. Sci. Comput..
[20] A. A. Nikishin,et al. Factorized sparse approximate inverse preconditionings. III. Iterative construction of preconditioners , 2000 .
[21] Michele Benzi,et al. Orderings for Factorized Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..
[22] Edmond Chow,et al. A Priori Sparsity Patterns for Parallel Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..
[23] H. Rue. Fast sampling of Gaussian Markov random fields , 2000 .
[24] H. V. D. Vorst,et al. Numerical methods for the QCDd overlap operator. I. Sign-function and error bounds , 2002, hep-lat/0202025.
[25] Alan S. Willsky,et al. A Krylov Subspace Method for Covariance Approximation and Simulation of Random Processes and Fields , 2003, Multidimens. Syst. Signal Process..
[26] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[27] Christopher K. I. Williams,et al. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .
[28] Oliver G. Ernst,et al. A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions , 2006, SIAM J. Numer. Anal..
[29] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[30] A. Pettitt,et al. Fast sampling from a Gaussian Markov random field using Krylov subspace approaches , 2008 .
[31] Valeria Simoncini,et al. Acceleration Techniques for Approximating the Matrix Exponential Operator , 2008, SIAM J. Matrix Anal. Appl..
[32] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[33] I. Turner,et al. A restarted Lanczos approximation to functions of a symmetric matrix , 2010 .
[34] Lei Wang,et al. Fast Evaluation of Multiquadric RBF Sums by a Cartesian Treecode , 2011, SIAM J. Sci. Comput..
[35] Jie Chen. A DEFLATED VERSION OF THE BLOCK CONJUGATE GRADIENT ALGORITHM WITH AN APPLICATION TO GAUSSIAN PROCESS MAXIMUM LIKELIHOOD ESTIMATION , 2011 .
[36] Mihai Anitescu,et al. Computing f(A)b via Least Squares Polynomial Approximations , 2011, SIAM J. Sci. Comput..
[37] Colin Fox,et al. Sampling Gaussian Distributions in Krylov Spaces with Conjugate Gradients , 2012, SIAM J. Sci. Comput..
[38] J. Skolnick,et al. Krylov subspace methods for computing hydrodynamic interactions in brownian dynamics simulations. , 2012, The Journal of chemical physics.
[39] Jo Eidsvik,et al. Norges Teknisk-naturvitenskapelige Universitet Iterative Numerical Methods for Sampling from High Dimensional Gaussian Distributions Iterative Numerical Methods for Sampling from High Dimensional Gaussian Distributions , 2022 .
[40] Stochastic Relaxation , 2014, Computer Vision, A Reference Guide.
[41] Owe Axelsson,et al. Reaching the superlinear convergence phase of the CG method , 2014, J. Comput. Appl. Math..