Local behavior in finite element methods
暂无分享,去创建一个
[1] Vidar Thomée,et al. Negative norm estimates and superconvergence in Galerkin methods for parabolic problems , 1980 .
[2] Juhani Pitkäranta,et al. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .
[3] V. Thomée,et al. Maximum norm stability and error estimates in parabolic finite element equations , 1980 .
[4] V. Thomée,et al. The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .
[5] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[6] J. Nitsche,et al. On Local Approximation Properties of L2-Projection on Spline-Subspaces† , 1972 .
[7] Interior Regularity and Local Convergence of Galerkin Finite Element Approximations for Elliptic Equations , 1975 .
[8] L. Wahlbin,et al. Maximum norm error estimates in the finite element method with isoparametric quadratic elements and numerical integration , 1978 .
[9] Rolf Rannacher,et al. On the smoothing property of the crank-nicolson scheme , 1982 .
[10] James H. Bramble,et al. Estimates for spline projections , 1976 .
[11] Alfred K. Louis,et al. Acceleration of convergence for finite element solutions of the Poisson equation , 1979 .
[12] James H. Bramble,et al. Maximum-norm interior estimates for Ritz-Galerkin methods , 1975 .
[13] J. Bramble. A survey of some finite element methods proposed for treating the dirichlet problem , 1975 .
[14] J. Nitsche,et al. ON DIRICHLET PROBLEMS USING SUBSPACES WITH NEARLY ZERO BOUNDARY CONDITIONS , 1972 .
[15] W. Eckhaus. Matched Asymptotic Expansions and Singular Perturbations , 1973 .
[16] Mary F. Wheeler,et al. A Galerkin procedure for approximating the flux on the boundary for elliptic and parabolic boundary value problems , 1974 .
[17] Jack K. Hale,et al. Upper semicontinuity of attractors for approximations of semigroups and partial differential equations , 1988 .
[18] David M. Young,et al. ON THE CRANK-NICOLSON PROCEDURE FOR SOLVING PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS, , 1957 .
[19] W. Schmitt,et al. Numerical Methods in Fracture Mechanics , 1987 .
[21] Finite Element Methods of High-Order Accuracy for Singular Two-Point Boundary Value Problems with Nonsmooth Solutions , 1980 .
[22] Interior maximum norm estimates for some simple finite element methods , 1974 .
[23] Vidar Thomée,et al. Some convergence estimates for semidiscrete type schemes for time-dependent nonselfadjoint parabolic equations , 1981 .
[24] Hans Peter Helfrich,et al. Fehlerabschätzungen für das Galerkinverfahren zur Lösung von Evolutionsgleichungen , 1974 .
[25] J. Nitsche. Der Einfluß von Randsingularitäten beim Ritzschen Verfahren , 1975 .
[26] V. Thomée,et al. On the Backward Euler Method for Parabolic Equations with Rough Initial Data , 1982 .
[27] Anatoly M. Genis. On Finite Element Methods for the Euler–Poisson–Darboux Equation , 1984 .
[28] L. A. Rukhovets,et al. Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary , 1969 .
[29] Vidar Thomée,et al. Besov Spaces and Applica-tions to DiKerence Methods for Initial Value Problems , 1975 .
[30] P. Laasonen. ON THE DISCRETIZATION ERROR OF THE DIRICHLET PROBLEM IN A PLANE REGION WITH CORNERS. , 1967 .
[31] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .
[32] Vidar Thomée,et al. On the Discretization in Time of Semilinear Parabolic Equations with Nonsmooth Initial Data , 1987 .
[33] J. E. Dendy. Two Methods of Galerkin Type Achieving Optimum $L^2 $ Rates of Convergence for First Order Hyperbolics , 1974 .
[34] L. Wahlbin. On the sharpness of certain local estimates for ¹ projections into finite element spaces: influence of a re-entrant corner , 1984 .
[35] J. Bramble,et al. Higher order local accuracy by averaging in the finite element method , 1977 .
[36] W. Eckhaus. Asymptotic Analysis of Singular Perturbations , 1979 .
[37] Ridgway Scott,et al. Finite element convergence for singular data , 1973 .
[38] J. Douglas,et al. Optimal _{∞} error estimates for Galerkin approximations to solutions of two-point boundary value problems , 1975 .
[39] K. E. Torrance,et al. Upstream-weighted differencing schemes and their application to elliptic problems involving fluid flow , 1974 .
[40] A. H. Schatz,et al. On the quasi-optimality in _{∞} of the ¹-projection into finite element spaces , 1982 .
[41] V. Thomée. Some interior estimates for semidiscrete Galerkin approximations for parabolic equations , 1979 .
[42] Andrey B. Andreev,et al. Superconvergence of the gradient for quadratic triangular finite elements , 1988 .
[43] Rolf Rannacher,et al. Finite element approximation of the nonstationary Navier-Stokes problem, part III. Smoothing property and higher order error estimates for spatial discretization , 1988 .
[44] Thomas J. R. Hughes,et al. A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems , 1986 .
[45] Vidar Thomée,et al. Convergence Rates of Parabolic Difference Schemes for Non-Smooth Data* , 1974 .
[46] M. Bakker. A note onCo Galerkin methods for two-point boundary problems , 1982 .
[47] A. H. Schatz,et al. Maximum norm estimates in the finite element method on plane polygonal domains. I , 1978 .
[48] Pekka Neittaanmäki,et al. On superconvergence techniques , 1987 .
[49] Vidar Thomée,et al. High order local approximations to derivatives in the finite element method , 1977 .
[50] Donald A. French,et al. The finite element method for a degenerate elliptic equation , 1987 .
[51] Gilbert Strang,et al. Approximation in the finite element method , 1972 .
[52] S. Demko. Inverses of Band Matrices and Local Convergence of Spline Projections , 1977 .
[53] R. W. Thatcher. The use of infinite grid refinements at singularities in the solution of Laplace's equation , 1976 .
[54] J. H. Bramble,et al. Bounds for a class of linear functionals with applications to Hermite interpolation , 1971 .
[55] M. Zlámal,et al. Some superconvergence results in the finite element method , 1977 .
[56] E. Stein. Singular Integrals and Di?erentiability Properties of Functions , 1971 .
[57] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .
[58] Kenneth Eriksson,et al. Galerkin Methods for Singular Boundary Value Problems in One Space Dimension , 1984 .
[59] P. H. Sammon,et al. Fully Discrete Approximation Methods for Parabolic Poblems with Nonsmooth Initial Data , 1983 .
[60] Vidar Thomée,et al. On Galerkin Methods in Semilinear Parabolic Problems , 1975 .
[61] L. R. Scott,et al. Optimal ^{∞} estimates for the finite element method on irregular meshes , 1976 .
[62] A dissipative Galerkin method applied to some quasilinear hyperbolic equations , 1974 .
[63] Uno Nävert,et al. An Analysis of some Finite Element Methods for Advection-Diffusion Problems , 1981 .
[64] S. Hilbert,et al. A Mollifier Useful for Approximations in Sobolev Spaces and Some Applications to Approximating Solutions of Differential Equations , 1973 .
[65] Vidar Thomée,et al. Some Convergence Estimates for Semidiscrete Galerkin Type Approximations for Parabolic Equations , 1977 .
[66] J. Bramble,et al. Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation , 1970 .
[67] Ivo Babuška,et al. A finite element scheme for domains with corners , 1972 .
[68] Kenneth Eriksson,et al. An adaptive finite element method for linear elliptic problems , 1988 .
[69] Nick Levine,et al. Superconvergent Recovery of the Gradient from Piecewise Linear Finite-element Approximations , 1985 .
[70] G. Lorentz. Approximation of Functions , 1966 .
[71] Thomas J. R. Hughes,et al. A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .
[72] Lars B. Wahlbin. A Dissipative Galerkin Method for the Numerical Solution of First Order Hyperbolic Equations , 1974 .
[73] Uniform convergence of Galerkin’s method for splines on highly nonuniform meshes , 1977 .
[74] Kenneth Eriksson,et al. High-order local rate of convergence by mesh-refinement in the finite element method , 1985 .
[75] P. H. Sammon,et al. Convergence Estimates for Semidiscrete Parabolic Equation Approximations. , 1982 .
[76] L. Bales. Semidiscrete and single step fully discrete approximations for second order hyperbolic equations with time-dependent coefficients , 1984 .
[77] L. Wahlbin,et al. On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions , 1983 .
[78] J. Smoller. Shock Waves and Reaction-Diffusion Equations , 1983 .
[79] Jean Descloux,et al. On Finite Element Matrices , 1972 .
[80] R. Kellogg. HIGHER ORDER SINGULARITIES FOR INTERFACE PROBLEMS , 1972 .
[81] L. Wahlbin. A comparison of the local behavior of spline L2-projections, fourier series and legendre series , 1985 .
[82] Jukka Saranen,et al. Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations , 1986 .
[83] A. H. Schatz,et al. A weak discrete maximum principle and stability of the finite element method in _{∞} on plane polygonal domains. I , 1980 .
[84] Dennis Jespersen,et al. Ritz–Galerkin Methods for Singular Boundary Value Problems , 1978 .
[85] Stig Larsson,et al. Error estimates for spatially discrete approximations of semilinear parabolic equations with nonsmooth initial data , 1987 .
[86] I. Babuška,et al. Analysis of finite element methods for second order boundary value problems using mesh dependent norms , 1980 .
[87] J. Blair. Approximate solution of elliptic and parabolic boundary value problems , 1970 .
[88] L. Wahlbin,et al. A Remark on Parabolic Smoothing and the Finite Element Method , 1980 .
[89] A. H. Schatz,et al. Maximum norm estimates in the finite element method on plane polygonal domains. II. Refinements , 1979 .
[90] Besov spaces in theory of approximation , 1970 .
[91] Superconvergence of the gradient of Galerkin approximations for elliptic problems , 1987 .
[92] W. Wendland. Elliptic systems in the plane , 1979 .
[93] James H. Bramble,et al. The Lagrange multiplier method for Dirichlet’s problem , 1981 .
[94] V. A. Kondrat'ev,et al. Boundary problems for elliptic equations in domains with conical or angular points , 1967 .
[95] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .
[96] J. J. Douglas,et al. Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces , 1974 .
[97] O. C. Zienkiewicz,et al. Finite element methods for second order differential equations with significant first derivatives , 1976 .
[98] M. Bakker. One-dimensional Galerkin methods and superconvergence at interior nodal points , 1984 .
[99] Mary F. Wheeler,et al. An $L^\infty $ estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials , 1974 .
[100] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .
[101] Gaetano Fichera,et al. Numerical and quantitative analysis , 1977 .
[102] B. Sendov. SOME QUESTIONS OF THE THEORY OF APPROXIMATIONS OF FUNCTIONS AND SETS IN THE HAUSDORFF METRIC , 1969 .
[103] Olof B. Widlund,et al. Smoothing of initial data and rates of convergence for parabolic difference equations , 1970 .
[104] P. Grisvard,et al. BEHAVIOR OF THE SOLUTIONS OF AN ELLIPTIC BOUNDARY VALUE PROBLEM IN A POLYGONAL OR POLYHEDRAL DOMAIN , 1976 .
[105] Ivo Babuška,et al. Adaptive Methods and Error Estimation for Elliptic Problems of Structural Mechanics. , 1983 .
[106] R. Rannacher,et al. On the Smoothing Property of the Galerkin Method for Parabolic Equations , 1982 .
[107] I. Babuska,et al. ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .
[108] J. Lions. Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal , 1973 .
[109] V. Thomée,et al. Maximum-norm stability and error estimates in Galerkin methods for parabolic equations in one space variable , 1983 .
[110] Frank Natterer,et al. Über die punktweise Konvergenz Finiter Elemente , 1975 .
[111] J. Douglas,et al. The stability inLq of theL2-projection into finite element function spaces , 1974 .
[112] R. Scott. Interpolated Boundary Conditions in the Finite Element Method , 1975 .
[113] M. Zlámal,et al. Superconvergence of the gradient of finite element solutions , 1979 .
[114] Interior error estimates of projection methods , 1973 .
[115] E. M. de Jager,et al. Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type , 1966 .
[116] J. Nitsche,et al. L∞-convergence of finite element approximations , 1977 .
[117] Kenneth Eriksson. Improved accuracy by adapted mesh-refinements in the finite element method , 1985 .
[118] Fabio Milner,et al. Interior and superconvergence estimates for mixed methods for second order elliptic problems , 1985 .
[119] C. D. Boor,et al. Spline approximation by quasiinterpolants , 1973 .
[120] Miloš Zlámal,et al. Superconvergence and reduced integration in the finite element method , 1978 .
[121] M. Wheeler. A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .
[122] Heinz-Otto Kreiss,et al. Methods for the approximate solution of time dependent problems , 1973 .
[123] A. H. Schatz,et al. Interior estimates for Ritz-Galerkin methods , 1974 .
[124] J. Bramble,et al. Rate of convergence estimates for nonselfadjoint eigenvalue approximations , 1973 .
[125] A. H. Schatz,et al. Crosswind Smear and Pointwise Errors in Streamline Diffusion Finite Element Methods , 1987 .
[126] Rolf Rannacher,et al. Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .
[127] V. Thomée. Spline Approximation and Difference Schemes for the Heat Equation. , 1972 .
[128] Wiktor Eckhaus,et al. Boundary Layers in Linear Elliptic Singular Perturbation Problems , 1972 .
[129] Pekka Neittaanmäki,et al. Superconvergence phenomenon in the finite element method arising from averaging gradients , 1984 .
[130] Claes Johnson,et al. Finite element methods for linear hyperbolic problems , 1984 .
[131] Richard Haverkamp. Eine Aussage zurL∞-Stabilität und zur genauen Konvergenzordnung derH01-Projektionen , 1984 .
[132] T. Dupont. Galerkin Methods for First Order Hyperbolics: An Example , 1973 .
[133] P. Jamet. Estimations d'erreur pour des éléments finis droits presque dégénérés , 1976 .