Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission

We report on the experimental realization of all-dielectric planar chiral metamaterials (PCMs) with large optical activity (up to 26.5°) in zeroth-order transmission under normal illumination. The design and fabrication processes are demonstrated in detail to show how to achieve the high-aspect-ratio, deep-groove, four-fold-rotational symmetric, subwavelength-period dielectric PCMs with prescribed polarization properties. The synchronization of numerical design and nanofabrication process appears to be an efficient, reliable and repeatable way to realize the PCM samples with high quality.

[1]  D. Bagnall,et al.  Intensity modulation and polarization rotation of visible light by dielectric planar chiral metamaterials , 2005 .

[2]  Jari Turunen,et al.  Optical activity in planar chiral metamaterials: Theoretical study , 2007 .

[3]  M. Wegener,et al.  Circular dichroism of planar chiral magnetic metamaterials. , 2007, Optics letters.

[4]  Lifeng Li,et al.  New formulation of the Fourier modal method for crossed surface-relief gratings , 1997 .

[5]  A. Friesem,et al.  Resonant grating waveguide structures , 1997 .

[6]  D. Bagnall,et al.  Giant optical activity in dielectric planar metamaterials with two-dimensional chirality , 2006 .

[7]  K. Konishi,et al.  Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings. , 2007, Optics express.

[8]  Konstantins Jefimovs,et al.  Optical activity in chiral gold nanogratings , 2005 .

[9]  Konstantins Jefimovs,et al.  Optical activity in subwavelength-period arrays of chiral metallic particles , 2003 .

[10]  B. Bai,et al.  Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry , 2005 .

[11]  Konstantins Jefimovs,et al.  Giant optical activity in quasi-two-dimensional planar nanostructures. , 2005, Physical review letters.

[12]  Lifeng Li,et al.  Reduction of computation time for crossed-grating problems: a group-theoretic approach. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  P. Polavarapu Kramers-Kronig transformation for optical rotatory dispersion studies. , 2005, The journal of physical chemistry. A.

[14]  Nikolay I. Zheludev,et al.  Giant optical gyrotropy due to electromagnetic coupling , 2007 .

[15]  Katsuaki Sato,et al.  Measurement of Magneto-Optical Kerr Effect Using Piezo-Birefringent Modulator , 1981 .

[16]  N. Zheludev,et al.  Optical manifestations of planar chirality. , 2003, Physical review letters.

[17]  G. Michael Morris,et al.  Resonant scattering from two-dimensional gratings , 1996 .

[18]  A. Tünnermann,et al.  An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings. , 2005, Optics express.