Ungewöhnlich hohe Rotationsbarrieren am tetraedrischen Kohlenstoffatom

Durch Rotation um CC-Einfachbindungen in geeignet substituierten Verbindungen kommen Rotationsisomere (auch Rotamere genannt) zustande, die sich getrennt isolieren lassen, wenn die Rotationsbarriere hoch genug ist. In diesem Aufsatz werden Triptycen- und Fluoren-Derivate besprochen, deren Rotationsbarrieren um 30 kcal/mol liegen.

[1]  Y. Ustynyuk,et al.  Dynamic 13C N.M.R. studies , 1973 .

[2]  T. H. Siddall,et al.  Proton magnetic resonance studies of slow rotation in 9-arylfluorenes , 1969 .

[3]  E. Chandross,et al.  Some 9-aryl fluorenes. Ring-current effects on nuclear magnetic resonance spectra, carbonium ions, and the 9-mesitylfluorenyl radical , 1968 .

[4]  N. Nakamura,et al.  Restricted Rotation Involving the Tetrahedral Carbon. II. 2-Substituted 4,6,8-Trimethylazulenes , 1971 .

[5]  M. Ōki,et al.  Restricted Rotation Involving the Tetrahedral Carbon. I. Some Diels-Alder Adducts Derived from 9-Substituted Anthracenes , 1971 .

[6]  Kazuo T. Suzuki,et al.  Fluorene derivatives. XXXI. Stable rotamers of 9,9':9',9''-terfluorenyls at room temperature , 1975 .

[7]  H. Kessler Nachweis gehinderter Rotationen und Inversionen durch NMR‐Spektroskopie , 1970 .

[8]  H. Nakanishi,et al.  Restricted rotation involving the tetrahedral carbon. V. Direct observation of the hindered rotation of a methyl group by high resolution nuclear magnetic resonance spectroscopy [11] , 1973 .

[9]  H. Iwamura,et al.  TRAPPING IN THE CARBENE INTERMEDIATES IN THE PHOTOLYSIS OF TRIPTYCENES , 1974 .

[10]  H. Nakanishi,et al.  Restricted rotation involving the tetrahedral carbon—VI : Some Diels-Alder adducts derived from 2-t-butylfuran , 1974 .

[11]  H. Kessler Detection of Hindered Rotation and Inversion by NMR Spectroscopy , 1970 .

[12]  H. Nakanishi,et al.  Restricted Rotation Involving the Tetrahedral Carbon. VII. Rotation About the Carbon-Group IV Single Bond , 1973 .

[13]  H. Nakanishi,et al.  Restricted Rotation Involving the Tetrahedral Carbon. XI. Barriers to Rotation and Conformational Preferences of Substituted 9-Isopropyltriptycenes , 1974 .

[14]  A. Lüttringhaus,et al.  Optisch aktive Ansa‐Verbindungen IV. ÜBER DEN WIRKUNGSBEREICH DES AN KOHLENSTOFF GEBUNDENEN WASSERSTOFFATOMS , 1957 .

[15]  V. Gil,et al.  Studies of sterically hindered and overcrowded molecules , 1965 .

[16]  Mikio Nakamura,et al.  Restricted Rotation Involving the Tetrahedral Carbon. XV. Restricted Rotation about a Csp8–Csp2 Bond in 9-Aryltriptycene Derivatives , 1975 .

[17]  L. G. Smith,et al.  The Infra‐Red Spectrum of C2H6 , 1949 .

[18]  F. Suzuki,et al.  Restricted Rotation Involving the Tetrahedral Carbon. XIV. Conformational Equilibria and Attractive Interactions in Substituted 9-Benzyltriptycenes , 1975 .

[19]  Mikio Nakamura,et al.  Restricted Rotation Involving the Tetrahedral Carbon. XVI. Isolation of Stable Rotamers about an sp3-sp3 Carbon Bond , 1975 .

[20]  J. D. Kemp,et al.  Hindered Rotation of the Methyl Groups in Ethane , 1936 .

[21]  K. Bartle,et al.  Steric effects in the proton magnetic resonance spectra of fluorenes and bifluorenyls. , 1970, Tetrahedron.

[22]  H. Nakanishi,et al.  Restricted Rotation Involving the Tetrahedral Carbon. X. Barriers to Rotation of Methyl Groups in 9-Methyltriptycene Derivatives. , 1974 .

[23]  W. Ford,et al.  Hindered rotation in 9-arylfluorenes. Resolutions of the mechanistic question , 1975 .

[24]  R. Franck,et al.  1,8-Di-tert-butylnaphthalenes , 1969 .

[25]  E. Warnhoff,et al.  Hindered Rotation in an o-Substituted Acetophenone , 1972 .

[26]  I. Sutherland The Investigation of the Kinetics of Conformational Changes by Nuclear Magnetic Resonance Spectroscopy , 1972 .